A Prospective Evaluation of Computerized Tomographic(CT) Scanning as a Screening Modality for Esophageal Varices
NCT ID: NCT00587197
Last Updated: 2009-11-10
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
134 participants
OBSERVATIONAL
2003-01-31
2007-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Non-invasive Prediction of Esophageal Varices in Liver Cirrhosis: A Multicenter Observational Study
NCT02593799
Development and Validation of an Noninvasive Model for Predicting High Risk Esophageal Varices in Cirrhosis
NCT04210297
Microbiome/Peptidome-based Model for Non-invasive Detection of High-risk Gastroesophageal Varices in Compensated Cirrhosis (CHESS1901/APPHA1901)
NCT03990753
GastrOesophageal Varices After Sustained Virological Response
NCT04191018
Non-invasive Prediction of Esophageal Varices in Patients With Non-Alcoholic Fatty Liver Disease With Advanced Fibrosis
NCT05485714
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
To reflect practice in the real world, the endoscopic procedures were deliberately chosen to be carried out by regularly scheduled endoscopists rather than a small selected group of very experienced endoscopists. Varices were regarded as present or absent, with size recorded as either large (≥5 mm diameter) or small (\<5 mm diameter) based on subjective assessment of diameter.. Titrated sedation was undertaken in all patients with midazolam and fentanyl.. The size of the esophageal varices was measured in the distal 5 cm of the esophagus during withdrawal of the instrument.
Two gastrointestinal radiologists (R1 and R2), each with over 10 years of experience and blinded to each other's evaluation, as well as to the results of the endoscopy, read each CT study. Axial images were evaluated to determine the presence and size of esophageal and gastric varices.
Multidetector CT scans (four detectors or higher)were performed using 0.5 second rotation time ,scanner settings of 250 mAs and 120 kVp, slice thickness 3 mm, and 3 mm reconstruction interval. Intravenous low osmolar iodinated contrast (Omnipaque 300; GE Healthcare) was administrated at a rate of 4ml/second, with late arterial phase scanning initiated 35 seconds after contrast injection, and carried out from the liver dome through the liver and pancreas. Portal phase imaging was initiated 70 seconds after contrast injection, and was carried out from above the diaphragm to the iliac crest. Partial phase images were also reconstructed to a nominal slice thickness of 0.75-1.5 mm and a 20cm field of view to maximize spatial resolution.. The total effective radiation dose for this protocol was 15mSv. There was a possible clinical indication to perform CT of the abdomen in 44 of the patients; CT was performed solely for research purposes in 58 patients. Large esophageal varices on CT scan were defined as those that were measured as greater than or equal to 5 mm in diameter, with small varices being those that measured less than 5 mm in diameter.
To determine degree of interobserver variability regarding characterization of variceal size between endoscopists, photographs of esophageal varices were taken during endoscopies and randomly selected images were circulated among 5 endoscopists, 2 with \<5 years' experience in practice and 3 with \>15 years' experience. The endoscopists were blinded to the results of the other's interpretation and were asked to characterize the endoscopic images as either small,large, or absent varices.
Patient satisfaction with endoscopy and CT was determined by administering a questionnaire for each patient to complete 24 hours after the procedure. The questionnaire determined the patient's opinion regarding elements of comfort and convenience during each test. In addition, patient preference for either study and the reason for preference were elicited.
Statistical Analysis - Sensitivity, specificity, positive and negative predictive values of CT in determining characteristics of varices were determined for both radiologists with endoscopy regarded as the reference standard.
The sensitivity of CT for detecting large varices was determined by identifying which of those patients with large varices at endoscopy were identified by CT as having esophageal varices. The specificity of CT for identifying esophageal varices was defined by correctly identifying the absence of varices in those patients in whom no varices were found endoscopically. Dilated and tortuous veins that protruded into the lumen of the stomach on CT were termed gastric varices. Variceal channels that coursed along the adventitia of the esophagus, but did not protrude into the esophageal lumen were termed peri-esophageal varices. Kappa statistic was used to determine agreement between observers in grading the size of the varices, both on endoscopy and on CT.
We assumed a 40% prevalence rate of esophageal varices, and a 20 % rate of large varices (2,8). To detect a 15% difference in detection rate of esophageal varices between CT and endoscopy, 95 patients would require to be studied for an alpha of 0.05 (one tailed test), or alpha of 0.10 (two tailed test), and beta of 0.20.
Decision Model We compared the cost-effectiveness of three strategies for the detection of large varices in patients with cirrhosis using a decision tree approach. The comparison strategies were 1) Endoscopy, 2) CT and 3) CT + Endoscopy only for patients with small varices on CT. The model was contructed using Treeage Pro Suite 2007 (Treeage Software, Williamstown, MA). Patients considered in this analysis are assumed to have compensated cirrhosis in whom the presence or absence of esophageal varices is not known. The decision tree assumed a two year time horizon. The efficacy and costs of the three approaches were compared using the incremental cost-effectiveness ratios (ICERs). The decision tree is presented in the Appendix (Figure 1) We made a number of assumptions for this analysis. The full set of assumptions are presented in the appendix (Table 1). We assumed the sensitivity of testing strategies and subsequent complication and bleeding rates from various sources. The sensitivity of detection of large varices with CT was derived from the results presented in this paper. The analysis was conducted from the perspective of a third party payer, considering only direct health care costs. Costs were not discounted due to the relatively short time horizon of the analysis (two years). The main outcome of the analysis was the cost per variceal bleed prevented. The incremental cost-effectiveness ratios (ICER) were calculated compared to the "Do Nothing" strategy.
The study protocol was approved by the Institutional Review Board.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_ONLY
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* Previous TIPS
* Inability to provide consent
* Renal insufficiency
18 Years
75 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Mayo Clinic
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
mayo Clinic
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Patrick S Kamath, MD
Role: PRINCIPAL_INVESTIGATOR
Mayo Clinic
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
1319-02
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.