Genetic Analyses of Nonsyndromic and Syndromic Deafness in Pakistan

NCT ID: NCT00341874

Last Updated: 2026-01-16

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

ENROLLING_BY_INVITATION

Total Enrollment

24000 participants

Study Classification

OBSERVATIONAL

Study Start Date

2000-03-16

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Objective: One objective of this study is to genetically map and identify mutated genes for human hereditary hearing loss. A second objective is to study the function of these genes in the auditory system using mouse models. Human hereditary hearing impairment is the result of abnormal ear development, abnormal ear function or both. Although the genes for numerous deafness loci have been mapped and identified, there are still many families segregating deafness as a monogenic trait but a mutant allele can t be ascribed to one of the currently reported deafness genes . In order to map and identify novel mutated genes associated with hearing loss in humans, we will continue to ascertain large families segregating syndromic and nonsyndromic deafness as a monogenic trait.

Study population: This study will ascertain subjects from consanguineous Pakistani families segregating hearing loss consisting of both nonsyndromic and syndromic forms of deafness of genetic etiology. Since a majority of Pakistani marriages are between first cousins, this tends to bring together the same recessive mutations for hearing loss with multiple affected individuals within single family lines, which is an advantage for this genetic study. A few years ago we stopped ascertaining families in India. We continue to ascertain both affected and unaffected Pakistani family members from age 2 years and up. Adults provide informed consent both for themselves and their children who agree to participate in this study. We will ascertain both genders and all Pakistani races and ethnicities.

Design: Subjects will be screened and consented by our collaborating Associate Investigator in Pakistan. After consenting, the subjects will undergo a history and physical, audiological assessment and testing, vestibular assessment and testing, and blood and urine analysis tests, along with a blood sample or buccal swab sample that will be used for genomic DNA extraction. Probands at the time of ascertainment are initially assumed to have a form of nonsyndromic deafness. Additional tests may be performed depending on the history or physical of the individual or after the deafness gene is identified. Data from functional studies in animal models may also point to other concomitant clinical features along with hearing loss. These additional tests may include: photographs or videotapes of a subject s body and face; eye and vision examinations for those with suspected or known eyesight problems related to their genetic hearing loss mutations, and EKGs and/or Echocardiograms for those with suspected or known heart problems related to their genetic hearing loss mutations. Urine and blood analyses may be requested for those individuals with genetic nephritic issues or infertility. For example, when a deaf female individual in a family is subsequently discovered to have Perrault syndrome, a recessive disorder characterized by hearing loss (usually the initial manifestation) and ovarian dysgenesis/primary amenorrhea, additional evaluations would then be conducted for a definitive diagnosis of Perrault syndrome. Such an evaluation would include a pelvic ultrasound scan and measurements of serum estrogen and gonadotropins. Similarly, in some of these families, hearing impaired males may be asked about their fertility since the possibility of male infertility in families segregating Perrault syndrome remains an open question. For genetic analyses, genomic DNA extracted from a blood sample or a buccal swab from affected and unaffected members of families segregating hereditary hearing loss will be genetically screened with polymorphic markers (STRs or SNPs) for linkage to the known deafness loci. The hearing phenotype of children (\>2 years old), adolescent and adult subjects will be assigned on the basis of performance from audiological examinations. Genomic DNA from families where deafness is found to be unlinked to the known deafness loci will then be used in genome wide screens with approximately 950,000 SNP markers distributed across the entire human genome to identify novel deafness loci. Alternatively, DNA samples from affected and unaffected individuals will undergo whole exome sequencing (WES) or whole genome sequencing (WGS) with a focus on potentially pathogenic variants located only in chromosomal regions of markers genetically linked to deafness. Subsequently, novel deafness genes will be positionally identified and their functions studied.

Outcome measures: Novel deafness loci and genes associated with hearing loss will be identified and will provide new insight into mechanisms required for sound transduction in humans. Data from this study is likely to be the basis of commercially available tests for early diagnosis and timely genetic counseling for at risk couples as well as the development of strategies to preserve hearing and prevent hearing loss.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Objective: One objective of this study is to genetically map and identify mutated genes for human hereditary hearing loss. A second objective is to study the function of these genes in the auditory system using mouse models. Human hereditary hearing impairment is the result of abnormal ear development, abnormal ear function or both. Although the genes for numerous deafness loci have been mapped and identified, there are still many families segregating deafness as a monogenic trait but a mutant allele can t be ascribed to one of the currently reported deafness genes . In order to map and identify novel mutated genes associated with hearing loss in humans, we will continue to ascertain large families segregating syndromic and nonsyndromic deafness as a monogenic trait.

Study population: This study will ascertain subjects from consanguineous Pakistani families segregating hearing loss consisting of both nonsyndromic and syndromic forms of deafness of genetic etiology. Since a majority of Pakistani marriages are between first cousins, this tends to bring together the same recessive mutations for hearing loss with multiple affected individuals within single family lines, which is an advantage for this genetic study. A few years ago we stopped ascertaining families in India. We continue to ascertain both affected and unaffected Pakistani family members from age 2 years and up. Adults provide informed consent both for themselves and their children who agree to participate in this study. We will ascertain both genders and all Pakistani races and ethnicities.

Design: Subjects will be screened and consented by our collaborating Associate Investigator in Pakistan. After consenting, the subjects will undergo a history and physical, audiological assessment and testing, vestibular assessment and testing, and blood and urine analysis tests, along with a blood sample or buccal swab sample that will be used for genomic DNA extraction. Probands at the time of ascertainment are initially assumed to have a form of nonsyndromic deafness. Additional tests may be performed depending on the history or physical of the individual or after the deafness gene is identified. Data from functional studies in animal models may also point to other concomitant clinical features along with hearing loss. These additional tests may include: photographs or videotapes of a subject s body and face; eye and vision examinations for those with suspected or known eyesight problems related to their genetic hearing loss mutations, and EKGs and/or Echocardiograms for those with suspected or known heart problems related to their genetic hearing loss mutations. Urine and blood analyses may be requested for those individuals with genetic nephritic issues or infertility. For example, when a deaf female individual in a family is subsequently discovered to have Perrault syndrome, a recessive disorder characterized by hearing loss (usually the initial manifestation) and ovarian dysgenesis/primary amenorrhea, additional evaluations would then be conducted for a definitive diagnosis of Perrault syndrome. Such an evaluation would include a pelvic ultrasound scan and measurements of serum estrogen and gonadotropins. Similarly, in some of these families, hearing impaired males may be asked about their fertility since the possibility of male infertility in families segregating Perrault syndrome remains an open question. For genetic analyses, genomic DNA extracted from a blood sample or a buccal swab from affected and unaffected members of families segregating hereditary hearing loss will be genetically screened with polymorphic markers (STRs or SNPs) for linkage to the known deafness loci. The hearing phenotype of children (\>2 years old), adolescent and adult subjects will be assigned on the basis of performance from audiological examinations. Genomic DNA from families where deafness is found to be unlinked to the known deafness loci will then be used in genome wide screens with approximately 950,000 SNP markers distributed across the entire human genome to identify novel deafness loci. Alternatively, DNA samples from affected and unaffected individuals will undergo whole exome sequencing (WES) or whole genome sequencing (WGS) with a focus on potentially pathogenic variants located only in chromosomal regions of markers genetically linked to deafness. Subsequently, novel deafness genes will be positionally identified and their functions studied.

Outcome measures: Novel deafness loci and genes associated with hearing loss will be identified and will provide new insight into mechanisms required for sound transduction in humans. Data from this study is likely to be the basis of commercially available tests for early diagnosis and timely genetic counseling for at risk couples as well as the development of strategies to preserve hearing and prevent hearing loss.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Hearing Disorder

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

1

Subjects with hearing loss consisting of both nonsyndromic and syndromic forms of deafness of genetic etiology

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Affected and unaffected members of families segregating deafness caused by genetic etiology.
* Adults must be able to provide informed consent.
* Adults must be able to provide informed consent for children who are at least two years of age
* All communities, ethnicities, and races as found in Pakistan.

Exclusion Criteria

* Persons with non-genetic forms of hearing loss likely due to acquired causes such as an infection, head or noise trauma, or exposure to an ototoxic drug will not be included in this protocol
* Syndromic forms of inherited deafness are excluded if the gene for the disorder is known and there is no reason to believe the disorder is genetically heterogeneous.
* Subjects cannot provide informed consent or have a parent/guardian that cannot provide consent.
* Children under the age of two years will not be included in this study because an objective audiological examination such as an ABR analysis may require sedation, which is presently not feasible in Pakistan.
Minimum Eligible Age

2 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Institute on Deafness and Other Communication Disorders (NIDCD)

NIH

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Thomas B Friedman, Ph.D.

Role: PRINCIPAL_INVESTIGATOR

National Institute on Deafness and Other Communication Disorders (NIDCD)

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Punjab

Lahore, , Pakistan

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Pakistan

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

OH93-DC-016

Identifier Type: -

Identifier Source: secondary_id

999993016

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Genetic Study of Age Related Hearing Loss
NCT01732289 COMPLETED EARLY_PHASE1
Genetics of Middle Ear Disease
NCT00422136 COMPLETED