Passive Fit of Implant-Supported Complete-Arch Prostheses Using Digital Workflows

NCT ID: NCT07315620

Last Updated: 2026-01-09

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Clinical Phase

NA

Total Enrollment

30 participants

Study Classification

INTERVENTIONAL

Study Start Date

2026-01-01

Study Completion Date

2027-03-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The goal of this clinical trial is to evaluate and compare three digital workflows for the fabrication of definitive implant-supported full-arch prostheses in adult patients requiring fixed implant rehabilitation.

The main questions it aims to answer are:

* Does an automated AI-assisted digital workflow improve the passive fit of definitive full-arch implant-supported prostheses compared with manual and splint-guided alignment workflows?
* Are there differences in marginal, geometric, mechanical, and radiographic passivity among the three digital workflows? Researchers will compare manual CBCT-STL alignment, splint-guided alignment, and automated AI-assisted CBCT-STL alignment to see if the degree of digital workflow automation affects the passive fit of definitive full-arch implant-supported prostheses.

Participants will:

* Be adults (18 years and older) indicated for fixed implant-supported full-arch rehabilitation.
* Receive a definitive, screw-retained, full-arch implant-supported prosthesis fabricated using one of the three assigned digital workflows.
* Undergo standardized clinical and radiographic assessments at the time of definitive prosthesis placement to evaluate prosthesis passive fit.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

This randomized controlled clinical trial aims to evaluate and compare the passive fit of definitive full-arch implant-supported prostheses fabricated using three different digital workflows with increasing levels of automation for implant position registration and prosthesis fabrication.

Full-arch implant-supported rehabilitations require a high level of precision to ensure passive fit between the prosthetic framework and the implant-abutment connections. Inadequate passive fit may lead to mechanical complications, biological overload, or long-term prosthetic failure. Digital workflows combining intraoral scanning (IOS) and cone-beam computed tomography (CBCT) have been introduced to improve accuracy; however, differences in data acquisition and dataset alignment strategies may influence the final prosthetic fit.

The study will include adult patients (18 years and older) indicated for fixed implant-supported full-arch rehabilitation in the maxilla or mandible. Eligible participants will be recruited from the Faculty of Dentistry of the Complutense University of Madrid and associated clinical centers. After providing written informed consent, participants will be randomly assigned in a 1:1:1 ratio to one of three digital workflows:

1. Manual CBCT-STL alignment (MedicalFit 1.0): implant positions are obtained by combining intraoral scans and CBCT data, with dataset registration performed manually by the operator based on visual alignment of scan bodies.
2. Splint-guided alignment (MedicalFit 2.0): a calibrated rigid reference splint with metallic cylinders is used to stabilize implant positions and assist manual dataset registration, aiming to reduce operator-dependent variability.
3. Automated AI-assisted CBCT-STL alignment (MedicalFit 3.0 - Pdental): dataset registration and passivation are performed automatically by dedicated software using advanced algorithms for implant detection and alignment, without manual intervention.

All participants will receive a definitive, screw-retained, full-arch implant-supported prosthesis fabricated according to the assigned digital workflow. Prosthetic materials and clinical procedures will follow standard clinical practice. No outcome measures will be assessed during provisional prosthetic phases.

Passive fit will be evaluated exclusively at the time of definitive prosthesis placement using a standardized multi-assessment clinical approach performed at each implant-prosthesis connection.

Marginal passive fit will be assessed clinically by direct inspection using a calibrated periodontal probe. The presence or absence of marginal discrepancies between the prosthesis and the transepithelial abutment will be evaluated based on visual and tactile criteria, including the ability of the probe to penetrate the prosthesis-abutment interface.

Geometric passive fit will be evaluated using the modified Sheffield test. With all prosthetic screws loosened except for one distal screw, the presence of any lifting or separation of the prosthetic framework at the non-tightened connections will be assessed visually and tactually using an explorer probe.

Mechanical passive fit will be assessed through the tactile sensitivity of the passive screw test. Resistance perceived during screw tightening will be evaluated qualitatively to identify the presence of internal stresses or framework flexure during seating of the definitive prosthesis.

Radiographic passive fit will be assessed by measuring marginal gaps at the prosthesis-abutment interface on standardized periapical radiographs. Radiographic gaps will be quantified and classified using predefined ordinal thresholds to identify clinically relevant discrepancies.

Each assessment will be scored using an ordinal scale (0-2) based on predefined clinical criteria. To reflect clinical decision-making and ensure a conservative interpretation of prosthetic fit, a hierarchical aggregation rule will be applied. For each assessment dimension, the prosthesis-level score will be defined as the worst score observed among all implant-prosthesis connections. The global multi-assessment passive fit score (0-2) will then be defined as the worst score observed across all assessment dimensions.

Accordingly, if any implant-prosthesis connection exhibits a clinically relevant misfit in any assessment, the definitive prosthesis will be classified as non-passive. This approach reflects the clinical principle that lack of passive fit at a single connection compromises the overall prosthetic outcome.

The primary objective of the study is to determine whether increased automation in digital workflows improves the passive fit of definitive full-arch implant-supported prostheses. Secondary objectives include comparing marginal, geometric, mechanical, and radiographic passivity outcomes among the three workflows and exploring the relationship between workflow automation and prosthetic adaptation accuracy.

The study follows CONSORT guidelines and aims to provide clinically relevant evidence to support the optimization of digital workflows in full-arch implant-supported prosthetic rehabilitation

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Prosthesis and Implant Dentistry

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

This is a randomized, parallel-group interventional clinical trial. Eligible participants are randomly assigned in a 1:1:1 ratio to one of three independent study arms, each corresponding to a different digital workflow for the fabrication of a definitive full-arch implant-supported prosthesis. Each participant receives a single definitive prosthesis fabricated using the assigned workflow, and outcomes are assessed once at the time of definitive prosthesis placement.
Primary Study Purpose

TREATMENT

Blinding Strategy

SINGLE

Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

CBCT-STL Alignment (Medicalfit 1.0)

Participants in this arm will receive a definitive, screw-retained, implant-supported full-arch prosthesis fabricated using a digital workflow based on manual alignment of CBCT and intraoral scan (STL) datasets. Scannable healing abutments (Tissue Shapers-IF; MedicalFit, Úbeda, Spain) will be connected to multi-unit abutments according to the manufacturer's instructions. An intraoral scan and a CBCT scan will be obtained and manually aligned by the operator during the CAD design stage using reference points visible in both datasets. Prosthetic framework passivation is performed manually during the CAD phase. The definitive prosthesis is designed and manufactured using CAD/CAM technology in monolithic zirconia (IPS e.max ZirCAD Prime; Ivoclar, Schaan, Liechtenstein). This workflow is fully operator-dependent and serves as an active comparator.

Group Type ACTIVE_COMPARATOR

CBCT-STL Alignment Workflow

Intervention Type PROCEDURE

This procedure consists of a fully digital workflow for fabricating a screw-retained, implant-supported full-arch prosthesis using manual alignment between CBCT and intraoral scan (STL) data. Scannable healing abutments (Tissue Shapers-IF; MedicalFit, Úbeda, Spain) are attached to multi-unit abutments torqued to 10 Ncm. A CBCT scan and an intraoral scan are acquired and manually aligned in CAD software using operator-defined reference points. Passive fit is adjusted manually during the CAD design stage. The definitive framework is milled from monolithic zirconia (IPS e.max ZirCAD Prime; Ivoclar, Schaan, Liechtenstein). This workflow is operator-dependent and serves as the control procedure.

Splint-Guided Alignment (Medicalfit 2.0)

Participants in this arm will receive a definitive, screw-retained, implant-supported full-arch prosthesis fabricated using a digital workflow that incorporates a rigid reference splint with metallic abutment cylinders to assist manual dataset alignment. Scannable healing abutments (Tissue Shapers-IF; MedicalFit, Úbeda, Spain) are connected to multi-unit abutments. A calibrated rigid splint is intraorally adapted and connected to the abutment cylinders, and both intraoral and splint scans are obtained. The acquired datasets are imported into CAD software, where CBCT-STL registration is performed manually using the splint as a reference. The definitive prosthetic framework is designed and manufactured using CAD/CAM technology in monolithic zirconia (IPS e.max ZirCAD Prime; Ivoclar, Schaan, Liechtenstein). This workflow remains operator-dependent and serves as an active comparator.

Group Type ACTIVE_COMPARATOR

Splint-Guided Alignment Workflow

Intervention Type PROCEDURE

This procedure employs a rigid reference splint with metallic abutment cylinders to guide dataset alignment for full-arch prosthesis fabrication. Scannable healing abutments (Tissue Shapers-IF; MedicalFit, Úbeda, Spain) are connected to multi-unit abutments torqued to 10 Ncm. The splint is attached intraorally and scanned extraorally to capture implant positions. The splint and intraoral scans (STL) are imported into CAD software, where manual alignment is performed using the splint as a reference. The final monolithic zirconia framework (IPS e.max ZirCAD Prime; Ivoclar, Schaan, Liechtenstein) is designed and milled via CAD/CAM. This workflow is operator-dependent and used as an active comparator.

Automated AI-Assisted CBCT-STL Alignment (Medicalfit 3.0)

Participants in this arm will receive a definitive, screw-retained, implant-supported full-arch prosthesis fabricated using an automated AI-assisted digital workflow. Scannable healing abutments (Tissue Shapers-IF; MedicalFit, Úbeda, Spain) are connected to multi-unit abutments according to the manufacturer's protocol. An intraoral scan and a CBCT scan are acquired and imported into dedicated AI-assisted software (Pdental; MedicalFit, Úbeda, Spain). The software automatically detects the scan bodies and performs CBCT-STL dataset alignment prior to CAD/CAM prosthesis fabrication. The definitive prosthesis is designed and manufactured using CAD/CAM technology in monolithic zirconia (IPS e.max ZirCAD Prime; Ivoclar, Schaan, Liechtenstein). This workflow minimizes operator involvement and represents the experimental intervention.

Group Type EXPERIMENTAL

Automated AI-Assisted CBCT-STL Alignment Workflow

Intervention Type PROCEDURE

This procedure uses AI-assisted software (Pdental, MedicalFit, Úbeda, Spain) to automate the alignment of CBCT and intraoral scan (STL) datasets for full-arch prosthesis fabrication. After placement of scannable healing abutments (Tissue Shapers-IF; MedicalFit), intraoral and CBCT scans are obtained. The software automatically detects healing abutments, performs CBCT-STL registration, and corrects deviations greater than 120 µm to achieve passive fit within clinically acceptable limits. The corrected digital model is exported in STL format for CAD design and CAM milling of a monolithic zirconia screw-retained prosthesis (IPS e.max ZirCAD Prime; Ivoclar, Schaan, Liechtenstein). This workflow minimizes operator dependency based on an AI-assisted automation. .

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

CBCT-STL Alignment Workflow

This procedure consists of a fully digital workflow for fabricating a screw-retained, implant-supported full-arch prosthesis using manual alignment between CBCT and intraoral scan (STL) data. Scannable healing abutments (Tissue Shapers-IF; MedicalFit, Úbeda, Spain) are attached to multi-unit abutments torqued to 10 Ncm. A CBCT scan and an intraoral scan are acquired and manually aligned in CAD software using operator-defined reference points. Passive fit is adjusted manually during the CAD design stage. The definitive framework is milled from monolithic zirconia (IPS e.max ZirCAD Prime; Ivoclar, Schaan, Liechtenstein). This workflow is operator-dependent and serves as the control procedure.

Intervention Type PROCEDURE

Splint-Guided Alignment Workflow

This procedure employs a rigid reference splint with metallic abutment cylinders to guide dataset alignment for full-arch prosthesis fabrication. Scannable healing abutments (Tissue Shapers-IF; MedicalFit, Úbeda, Spain) are connected to multi-unit abutments torqued to 10 Ncm. The splint is attached intraorally and scanned extraorally to capture implant positions. The splint and intraoral scans (STL) are imported into CAD software, where manual alignment is performed using the splint as a reference. The final monolithic zirconia framework (IPS e.max ZirCAD Prime; Ivoclar, Schaan, Liechtenstein) is designed and milled via CAD/CAM. This workflow is operator-dependent and used as an active comparator.

Intervention Type PROCEDURE

Automated AI-Assisted CBCT-STL Alignment Workflow

This procedure uses AI-assisted software (Pdental, MedicalFit, Úbeda, Spain) to automate the alignment of CBCT and intraoral scan (STL) datasets for full-arch prosthesis fabrication. After placement of scannable healing abutments (Tissue Shapers-IF; MedicalFit), intraoral and CBCT scans are obtained. The software automatically detects healing abutments, performs CBCT-STL registration, and corrects deviations greater than 120 µm to achieve passive fit within clinically acceptable limits. The corrected digital model is exported in STL format for CAD design and CAM milling of a monolithic zirconia screw-retained prosthesis (IPS e.max ZirCAD Prime; Ivoclar, Schaan, Liechtenstein). This workflow minimizes operator dependency based on an AI-assisted automation. .

Intervention Type PROCEDURE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Adults aged 18 years or older.
2. Patients indicated for fixed implant-supported full-arch rehabilitation in the maxilla or mandible.
3. Presence of clinically stable, osteointegrated titanium implants suitable for prosthetic rehabilitation.
4. Absence of clinical or radiographic signs of peri-implant disease.
5. Ability to understand the study procedures and provide written informed consent.
6. Willingness and ability to attend all required clinical visits and evaluations.

Exclusion Criteria

1. Presence of peri-implant mucositis or peri-implantitis at the time of evaluation.
2. Implant mobility or implant positioning that prevents proper prosthetic rehabilitation.
3. Uncontrolled systemic medical conditions that could interfere with study participation or prosthetic treatment.
4. Cognitive, psychological, or medical conditions that limit the ability to comply with study procedures.
5. Inability to complete the required clinical evaluations or follow the study protocol, as judged by the investigator.
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Universidad Complutense de Madrid

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Miguel Gómez Polo

Associate Professor of Prosthodontics, Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Universidad Complutense de Madrid

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Miguel A Gómez Polo, DDS, PhD

Role: STUDY_DIRECTOR

School of Dentistry, Complutense University of Madrid. Pza Ramon y Cajal S/N. 28040 Madrid, Spain

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University Complutense of Madrid

Madrid, Madrid, Spain

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Spain

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Miguel A Gomez-Polo, DDS, PhD, DDS

Role: primary

+34 91 394 2029

References

Explore related publications, articles, or registry entries linked to this study.

Abduo J, Bennani V, Waddell N, Lyons K, Swain M. Assessing the fit of implant fixed prostheses: a critical review. Int J Oral Maxillofac Implants. 2010 May-Jun;25(3):506-15.

Reference Type BACKGROUND
PMID: 20556249 (View on PubMed)

Abduo J, Lyons K, Bennani V, Waddell N, Swain M. Fit of screw-retained fixed implant frameworks fabricated by different methods: a systematic review. Int J Prosthodont. 2011 May-Jun;24(3):207-20.

Reference Type BACKGROUND
PMID: 21519567 (View on PubMed)

Abduo J, Judge RB. Implications of implant framework misfit: a systematic review of biomechanical sequelae. Int J Oral Maxillofac Implants. 2014 May-Jun;29(3):608-21. doi: 10.11607/jomi.3418.

Reference Type BACKGROUND
PMID: 24818199 (View on PubMed)

Heckmann SM, Karl M, Wichmann MG, Winter W, Graef F, Taylor TD. Cement fixation and screw retention: parameters of passive fit. An in vitro study of three-unit implant-supported fixed partial dentures. Clin Oral Implants Res. 2004 Aug;15(4):466-73. doi: 10.1111/j.1600-0501.2004.01027.x.

Reference Type BACKGROUND
PMID: 15248882 (View on PubMed)

Abdelrehim A, Etajuri EA, Sulaiman E, Sofian H, Salleh NM. Magnitude of misfit threshold in implant-supported restorations: A systematic review. J Prosthet Dent. 2024 Sep;132(3):528-535. doi: 10.1016/j.prosdent.2022.09.010. Epub 2022 Nov 7.

Reference Type BACKGROUND
PMID: 36357194 (View on PubMed)

Pan Y, Tsoi JKH, Lam WYH, Pow EHN. Implant framework misfit: A systematic review on assessment methods and clinical complications. Clin Implant Dent Relat Res. 2021 Apr;23(2):244-258. doi: 10.1111/cid.12968. Epub 2020 Dec 16.

Reference Type BACKGROUND
PMID: 33331058 (View on PubMed)

Gomez-Polo M, Alvarez F, Ortega R, Gomez-Polo C, Barmak AB, Kois JC, Revilla-Leon M. Influence of the implant scan body bevel location, implant angulation and position on intraoral scanning accuracy: An in vitro study. J Dent. 2022 Jun;121:104122. doi: 10.1016/j.jdent.2022.104122. Epub 2022 Apr 6.

Reference Type BACKGROUND
PMID: 35395345 (View on PubMed)

Lin WS, Harris BT, Elathamna EN, Abdel-Azim T, Morton D. Effect of implant divergence on the accuracy of definitive casts created from traditional and digital implant-level impressions: an in vitro comparative study. Int J Oral Maxillofac Implants. 2015 Jan-Feb;30(1):102-9. doi: 10.11607/jomi.3592.

Reference Type BACKGROUND
PMID: 25615919 (View on PubMed)

Carneiro Pereira AL, Medeiros VR, da Fonte Porto Carreiro A. Influence of implant position on the accuracy of intraoral scanning in fully edentulous arches: A systematic review. J Prosthet Dent. 2021 Dec;126(6):749-755. doi: 10.1016/j.prosdent.2020.09.008. Epub 2020 Oct 23.

Reference Type BACKGROUND
PMID: 33268069 (View on PubMed)

Basaki K, Alkumru H, De Souza G, Finer Y. Accuracy of Digital vs Conventional Implant Impression Approach: A Three-Dimensional Comparative In Vitro Analysis. Int J Oral Maxillofac Implants. 2017 July/August;32(4):792-799. doi: 10.11607/jomi.5431. Epub 2017 Jun 14.

Reference Type BACKGROUND
PMID: 28618432 (View on PubMed)

Revilla-Leon M, Kois DE, Kois JC. A guide for maximizing the accuracy of intraoral digital scans. Part 1: Operator factors. J Esthet Restor Dent. 2023 Jan;35(1):230-240. doi: 10.1111/jerd.12985. Epub 2022 Dec 7.

Reference Type BACKGROUND
PMID: 36479807 (View on PubMed)

Revilla-Leon M, Kois DE, Kois JC. A guide for maximizing the accuracy of intraoral digital scans: Part 2-Patient factors. J Esthet Restor Dent. 2023 Jan;35(1):241-249. doi: 10.1111/jerd.12993. Epub 2023 Jan 13.

Reference Type BACKGROUND
PMID: 36639916 (View on PubMed)

Revilla-Leon M, Gohil A, Barmak AB, Gomez-Polo M, Perez-Barquero JA, Att W, Kois JC. Influence of ambient temperature changes on intraoral scanning accuracy. J Prosthet Dent. 2023 Nov;130(5):755-760. doi: 10.1016/j.prosdent.2022.01.012. Epub 2022 Feb 21.

Reference Type BACKGROUND
PMID: 35210107 (View on PubMed)

Revilla-Leon M, Subramanian SG, Ozcan M, Krishnamurthy VR. Clinical Study of the Influence of Ambient Light Scanning Conditions on the Accuracy (Trueness and Precision) of an Intraoral Scanner. J Prosthodont. 2020 Feb;29(2):107-113. doi: 10.1111/jopr.13135. Epub 2019 Dec 30.

Reference Type BACKGROUND
PMID: 31860144 (View on PubMed)

Revilla-Leon M, Subramanian SG, Att W, Krishnamurthy VR. Analysis of Different Illuminance of the Room Lighting Condition on the Accuracy (Trueness and Precision) of An Intraoral Scanner. J Prosthodont. 2021 Feb;30(2):157-162. doi: 10.1111/jopr.13276. Epub 2020 Nov 7.

Reference Type BACKGROUND
PMID: 33094878 (View on PubMed)

Revilla-Leon M, Jiang P, Sadeghpour M, Piedra-Cascon W, Zandinejad A, Ozcan M, Krishnamurthy VR. Intraoral digital scans: Part 2-influence of ambient scanning light conditions on the mesh quality of different intraoral scanners. J Prosthet Dent. 2020 Nov;124(5):575-580. doi: 10.1016/j.prosdent.2019.06.004. Epub 2019 Dec 20.

Reference Type BACKGROUND
PMID: 31870612 (View on PubMed)

Revilla-Leon M, Jiang P, Sadeghpour M, Piedra-Cascon W, Zandinejad A, Ozcan M, Krishnamurthy VR. Intraoral digital scans-Part 1: Influence of ambient scanning light conditions on the accuracy (trueness and precision) of different intraoral scanners. J Prosthet Dent. 2020 Sep;124(3):372-378. doi: 10.1016/j.prosdent.2019.06.003. Epub 2019 Dec 19.

Reference Type BACKGROUND
PMID: 31864638 (View on PubMed)

Katsoulis J, Takeichi T, Sol Gaviria A, Peter L, Katsoulis K. Misfit of implant prostheses and its impact on clinical outcomes. Definition, assessment and a systematic review of the literature. Eur J Oral Implantol. 2017;10 Suppl 1:121-138.

Reference Type BACKGROUND
PMID: 28944373 (View on PubMed)

Jemt T. Failures and complications in 391 consecutively inserted fixed prostheses supported by Branemark implants in edentulous jaws: a study of treatment from the time of prosthesis placement to the first annual checkup. Int J Oral Maxillofac Implants. 1991 Fall;6(3):270-6.

Reference Type BACKGROUND
PMID: 1813395 (View on PubMed)

Klineberg IJ, Murray GM. Design of superstructures for osseointegrated fixtures. Swed Dent J Suppl. 1985;28:63-9. No abstract available.

Reference Type BACKGROUND
PMID: 3904064 (View on PubMed)

Mangano F, Gandolfi A, Luongo G, Logozzo S. Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health. 2017 Dec 12;17(1):149. doi: 10.1186/s12903-017-0442-x.

Reference Type BACKGROUND
PMID: 29233132 (View on PubMed)

Flugge TV, Att W, Metzger MC, Nelson K. Precision of Dental Implant Digitization Using Intraoral Scanners. Int J Prosthodont. 2016 May-Jun;29(3):277-83. doi: 10.11607/ijp.4417.

Reference Type BACKGROUND
PMID: 27148990 (View on PubMed)

Wismeijer D, Joda T, Flugge T, Fokas G, Tahmaseb A, Bechelli D, Bohner L, Bornstein M, Burgoyne A, Caram S, Carmichael R, Chen CY, Coucke W, Derksen W, Donos N, El Kholy K, Evans C, Fehmer V, Fickl S, Fragola G, Gimenez Gonzales B, Gholami H, Hashim D, Hui Y, Kokat A, Vazouras K, Kuhl S, Lanis A, Leesungbok R, van der Meer J, Liu Z, Sato T, De Souza A, Scarfe WC, Tosta M, van Zyl P, Vach K, Vaughn V, Vucetic M, Wang P, Wen B, Wu V. Group 5 ITI Consensus Report: Digital technologies. Clin Oral Implants Res. 2018 Oct;29 Suppl 16:436-442. doi: 10.1111/clr.13309.

Reference Type BACKGROUND
PMID: 30328201 (View on PubMed)

Kim JH, Kim KR, Kim S. Critical appraisal of implant impression accuracies: A systematic review. J Prosthet Dent. 2015 Aug;114(2):185-92.e1. doi: 10.1016/j.prosdent.2015.02.005. Epub 2015 Apr 30.

Reference Type BACKGROUND
PMID: 25935089 (View on PubMed)

Lee SJ, Gallucci GO. Digital vs. conventional implant impressions: efficiency outcomes. Clin Oral Implants Res. 2013 Jan;24(1):111-5. doi: 10.1111/j.1600-0501.2012.02430.x. Epub 2012 Feb 22.

Reference Type BACKGROUND
PMID: 22353208 (View on PubMed)

Tabesh M, Nejatidanesh F, Savabi G, Davoudi A, Savabi O, Mirmohammadi H. Marginal adaptation of zirconia complete-coverage fixed dental restorations made from digital scans or conventional impressions: A systematic review and meta-analysis. J Prosthet Dent. 2021 Apr;125(4):603-610. doi: 10.1016/j.prosdent.2020.01.035. Epub 2020 Apr 10.

Reference Type BACKGROUND
PMID: 32284188 (View on PubMed)

Revilla-Leon M, Frazier K, da Costa JB, Kumar P, Duong ML, Khajotia S, Urquhart O; Council on Scientific Affairs. Intraoral scanners: An American Dental Association Clinical Evaluators Panel survey. J Am Dent Assoc. 2021 Aug;152(8):669-670.e2. doi: 10.1016/j.adaj.2021.05.018.

Reference Type BACKGROUND
PMID: 34325781 (View on PubMed)

Alghazzawi TF. Advancements in CAD/CAM technology: Options for practical implementation. J Prosthodont Res. 2016 Apr;60(2):72-84. doi: 10.1016/j.jpor.2016.01.003. Epub 2016 Feb 28.

Reference Type BACKGROUND
PMID: 26935333 (View on PubMed)

Watanabe H, Fellows C, An H. Digital Technologies for Restorative Dentistry. Dent Clin North Am. 2022 Oct;66(4):567-590. doi: 10.1016/j.cden.2022.05.006. Epub 2022 Sep 11.

Reference Type BACKGROUND
PMID: 36216447 (View on PubMed)

Wang J, Wang B, Liu YY, Luo YL, Wu YY, Xiang L, Yang XM, Qu YL, Tian TR, Man Y. Recent Advances in Digital Technology in Implant Dentistry. J Dent Res. 2024 Jul;103(8):787-799. doi: 10.1177/00220345241253794. Epub 2024 May 31.

Reference Type BACKGROUND
PMID: 38822563 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

25/701-IC_P_CE

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Prosthetic Modality and MBL
NCT07156110 RECRUITING NA