Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
138 participants
INTERVENTIONAL
2025-09-22
2028-08-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
* Does impaired control of attention and eye movement in PD alter how social cues are perceived and interpreted?
* Does therapeutic DBS improve or worsen attentional and perceptual deficits for social cues in PD and ET?
* Can DBS be optimized to restore normal attentional control in PD while remaining an effective therapy for other aspects of the disorder.
* What do parts of the brain targeted by DBS contribute to the control of attention?
Using an eye tracking camera, investigators will study how participants with PD and ET look at and perceive facial expressions of emotion before and after starting DBS therapy, in comparison to a group of healthy participants without ET, PD or DBS. Participants with PD and ET will see and rate morphed facial expressions on a computer screen in three conditions:
* Before starting DBS therapy (over approximately 1 hour).
* In the operating room, during the standard procedure to implant DBS electrodes, while the participant is awake (for no more than 15 minutes).
* After starting DBS therapy, with brief experimental changes of DBS stimulation level and frequency (over approximately 1 hour).
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
This research addresses a critical gap in understanding non-motor symptoms of Parkinson's disease by exploring how attention, eye movement, and perception interact. Findings will provide evidence on whether cognitive and emotional symptoms in PD stem from impaired attentional control, offering a new framework for treating these deficits. Additionally, the study will shed light on how different DBS frequencies affect perception and cognition, potentially guiding personalized stimulation strategies to alleviate both motor and non-motor symptoms. The insights gained may influence future therapies for PD, advancing both scientific knowledge and patient care.
Participants will be divided into three groups: PD undergoing DBS, essential tremor (ET) undergoing DBS (as a comparison group for non-PD DBS effects) and healthy age- and sex-matched controls. Participants will complete facial morph rating tasks (rating faces as happy, neutral, or sad) and visual search tasks (finding faces among distractors), while their eye movements are tracked.
The first study aim is to measure how altered attention influences facial emotion perception in PD by tracking eye movements while participants view and categorize emotional face stimuli. The second aim is to characterize brain activity in the STN related to attentional and perceptual processes during awake DBS surgery by capturing microelectrode recordings (MER) of neural activity while participants view emotional faces, allowing researchers to map STN's role in guiding attention and eye movements. The third aim is to test how DBS stimulation at different frequencies (high, low, or off) affects attention, eye movement, and emotional perception by having participants perform visual and perceptual tasks under varying DBS settings to evaluate how brain stimulation influences cognitive and perceptual functions.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Acute alteration of DBS
All participants in the single arm of this study will undergo acute alteration of DBS stimulation under three conditions in randomized order over the course of 1 hour.
Normal therapeutic DBS
Participants will receive deep brain stimulation delivered at the clinically determined therapeutic frequency and current over approximately 20 min.
Reduced current DBS
Participants will receive deep brain stimulation delivered at the clinically determined therapeutic frequency and reduced (50%) current over approximately 20 minutes.
Reduced frequency DBS
Participants will receive deep brain stimulation delivered at the clinically determined therapeutic current and reduced (4 Hz) frequency over approximately 20 min.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Normal therapeutic DBS
Participants will receive deep brain stimulation delivered at the clinically determined therapeutic frequency and current over approximately 20 min.
Reduced current DBS
Participants will receive deep brain stimulation delivered at the clinically determined therapeutic frequency and reduced (50%) current over approximately 20 minutes.
Reduced frequency DBS
Participants will receive deep brain stimulation delivered at the clinically determined therapeutic current and reduced (4 Hz) frequency over approximately 20 min.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Ability and willingness to provide signed informed consent for this study
* Ability to express perceptual judgments through a button press or mouse- controlled computerized slider
* Age 19 - 90 years
* DBS Participants (Aim 1):
* Diagnosis of idiopathic Parkinson's disease (PD) or essential tremor (ET)
* Scheduled for new implantation of a therapeutic DBS device targeted to subthalamic nucleus (STN), ventral intermediate nucleus of thalamus (VIM) or internal globus pallidus (GPi)
* Comparison Participants (Aim 1):
o Selection by age matching to participants in PD group
* Parkinson's disease (PD) and essential tremor (ET) Participants (Aim 2):
* Ability and willingness to provide signed informed consent for this study
* Ability to express perceptual judgments through a button press or mouse- controlled computerized slider
* Age 19 - 90 years
* Scheduled for awake DBS implantation with clinical micro-electrode recordings (MER)
* Willing and able to engage in tasks during an awake surgical procedure
* Parkinson's disease (PD) and essential tremor (ET) Participants (Aim 3):
* Ability and willingness to provide signed informed consent for this study
* Ability to express perceptual judgments through a button press or mouse- controlled computerized slider
* Age 19 - 90 years
* Willing to undergo acute manipulations of DBS
* Able to tolerate acute changes of DBS
Exclusion Criteria
* Corrected visual acuity insufficient to perceptually judge face stimuli
* Inability to understand task instructions or complete task requirements
* DBS Participants (Aim 1):
o Insufficient therapeutic control of motor symptoms to engage in tasks requiring button press or use of a mouse to control a slider
* Healthy Comparison Participants (Aim 1):
o History of neurodegenerative disorder
* Parkinson's disease (PD) and essential tremor (ET) Participants (Aim 2):
* Corrected visual acuity insufficient to perceptually judge face stimuli
* Inability to understand task instructions or complete task requirements
* Not undergoing awake DBS implantation
* Uncorrected visual acuity insufficient to perceptually judge face stimuli
* Parkinson's disease (PD) and essential tremor (ET) Participants (Aim 3):
* Corrected visual acuity insufficient to perceptually judge face stimuli
* Inability to understand task instructions or complete task requirements
* Failure of DBS to achieve a therapeutic effect on motor symptoms
19 Years
90 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute of General Medical Sciences (NIGMS)
NIH
University of Nebraska
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Christopher K Kovach, PhD
Role: PRINCIPAL_INVESTIGATOR
University of Nebraska
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Nebraska Medical Center
Omaha, Nebraska, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Dulce V Maroni, PhD
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Caap-Ahlgren M, Dehlin O. Factors of importance to the caregiver burden experienced by family caregivers of Parkinson's disease patients. Aging Clin Exp Res. 2002 Oct;14(5):371-7. doi: 10.1007/BF03324464.
Jacobs DH, Shuren J, Bowers D, Heilman KM. Emotional facial imagery, perception, and expression in Parkinson's disease. Neurology. 1995 Sep;45(9):1696-702. doi: 10.1212/wnl.45.9.1696.
Isoda M, Hikosaka O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci. 2007 Feb;10(2):240-8. doi: 10.1038/nn1830. Epub 2007 Jan 21.
Siegert RJ, Taylor KD, Weatherall M, Abernethy DA. Is implicit sequence learning impaired in Parkinson's disease? A meta-analysis. Neuropsychology. 2006 Jul;20(4):490-5. doi: 10.1037/0894-4105.20.4.490.
Jahanshahi M, Obeso I, Rothwell JC, Obeso JA. A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition. Nat Rev Neurosci. 2015 Dec;16(12):719-32. doi: 10.1038/nrn4038. Epub 2015 Nov 4.
Bek J, Poliakoff E, Lander K. Measuring emotion recognition by people with Parkinson's disease using eye-tracking with dynamic facial expressions. J Neurosci Methods. 2020 Feb 1;331:108524. doi: 10.1016/j.jneumeth.2019.108524. Epub 2019 Nov 17.
McIntyre CC, Hahn PJ. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis. 2010 Jun;38(3):329-37. doi: 10.1016/j.nbd.2009.09.022. Epub 2009 Oct 3.
Sugita Y. Face perception in monkeys reared with no exposure to faces. Proc Natl Acad Sci U S A. 2008 Jan 8;105(1):394-8. doi: 10.1073/pnas.0706079105. Epub 2008 Jan 2.
W. Penny and A. Holmes. Random effects analysis. Statistical parametric mapping: The analysis of functional brain images, 156:165, 2007.
C. K. Kovach and M. A. Howard III. Decomposition of higher-order spectra for blind multiple-input deconvolution, pattern identification and separation. Signal Processing, 165:357-379, 2019.
C. Kovach, J. Moreira, J. Berger, M. Howard III, L. Gwilliams, A. Fallah, L. Comstock, and E. Mendes. Higher-order spectral decomposition applied to spike sorting. Feb. 2023.
Tottenham N, Tanaka JW, Leon AC, McCarry T, Nurse M, Hare TA, Marcus DJ, Westerlund A, Casey BJ, Nelson C. The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res. 2009 Aug 15;168(3):242-9. doi: 10.1016/j.psychres.2008.05.006. Epub 2009 Jun 28.
X. Fan, M. Mocchi, B. Pascuzzi, J. Xiao, B. A. Metzger, R. K. Mathura, C. Hacker, J. A. Adkinson, E. Bartoli, S. Elhassa, et al. Brain mechanisms underlying the emotion processing bias in treatment- resistant depression. Nature Mental Health, pages 1-10, 2024.
Metzger BA, Kalva P, Mocchi MM, Cui B, Adkinson JA, Wang Z, Mathura R, Kanja K, Gavvala J, Krishnan V, Lin L, Maheshwari A, Shofty B, Magnotti JF, Willie JT, Sheth SA, Bijanki KR. Intracranial stimulation and EEG feature analysis reveal affective salience network specialization. Brain. 2023 Oct 3;146(10):4366-4377. doi: 10.1093/brain/awad200.
Bijanki KR, Kovach CK, McCormick LM, Kawasaki H, Dlouhy BJ, Feinstein J, Jones RD, Howard MA 3rd. Case report: stimulation of the right amygdala induces transient changes in affective bias. Brain Stimul. 2014 Sep-Oct;7(5):690-3. doi: 10.1016/j.brs.2014.05.005. Epub 2014 May 24.
Marneweck M, Loftus A, Hammond G. Psychophysical measures of sensitivity to facial expression of emotion. Front Psychol. 2013 Feb 20;4:63. doi: 10.3389/fpsyg.2013.00063. eCollection 2013.
Sprengelmeyer R, Young AW, Mahn K, Schroeder U, Woitalla D, Buttner T, Kuhn W, Przuntek H. Facial expression recognition in people with medicated and unmedicated Parkinson's disease. Neuropsychologia. 2003;41(8):1047-57. doi: 10.1016/s0028-3932(02)00295-6.
Hershey T, Campbell MC, Videen TO, Lugar HM, Weaver PM, Hartlein J, Karimi M, Tabbal SD, Perlmutter JS. Mapping Go-No-Go performance within the subthalamic nucleus region. Brain. 2010 Dec;133(Pt 12):3625-34. doi: 10.1093/brain/awq256. Epub 2010 Sep 20.
McIntosh LG, Mannava S, Camalier CR, Folley BS, Albritton A, Konrad PE, Charles D, Park S, Neimat JS. Emotion recognition in early Parkinson's disease patients undergoing deep brain stimulation or dopaminergic therapy: a comparison to healthy participants. Front Aging Neurosci. 2015 Jan 21;6:349. doi: 10.3389/fnagi.2014.00349. eCollection 2014.
Albuquerque L, Coelho M, Martins M, Guedes LC, Rosa MM, Ferreira JJ, Cattoni MB, Carvalho H, Ferreira AG, Martins IP. STN-DBS does not change emotion recognition in advanced Parkinson's disease. Parkinsonism Relat Disord. 2014 Feb;20(2):166-9. doi: 10.1016/j.parkreldis.2013.10.010. Epub 2013 Oct 18.
Berney A, Panisset M, Sadikot AF, Ptito A, Dagher A, Fraraccio M, Savard G, Pell M, Benkelfat C. Mood stability during acute stimulator challenge in Parkinson's disease patients under long-term treatment with subthalamic deep brain stimulation. Mov Disord. 2007 Jun 15;22(8):1093-6. doi: 10.1002/mds.21245.
Schneider F, Habel U, Volkmann J, Regel S, Kornischka J, Sturm V, Freund HJ. Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease. Arch Gen Psychiatry. 2003 Mar;60(3):296-302. doi: 10.1001/archpsyc.60.3.296.
Wagenbreth C, Wattenberg L, Heinze HJ, Zaehle T. Implicit and explicit processing of emotional facial expressions in Parkinson's disease. Behav Brain Res. 2016 Apr 15;303:182-90. doi: 10.1016/j.bbr.2016.01.059. Epub 2016 Feb 2.
Mermillod M, Mondillon L, Rieu I, Devaux D, Chambres P, Auxiette C, Dalens H, Coulangeon LM, Jalenques I, Durif F. Dopamine replacement therapy and deep brain stimulation of the subthalamic nuclei induce modulation of emotional processes at different spatial frequencies in Parkinson's disease. J Parkinsons Dis. 2014;4(1):97-110. doi: 10.3233/JPD-130256.
Mondillon L, Mermillod M, Musca SC, Rieu I, Vidal T, Chambres P, Auxiette C, Dalens H, Marie Coulangeon L, Jalenques I, Lemaire JJ, Ulla M, Derost P, Marques A, Durif F. The combined effect of subthalamic nuclei deep brain stimulation and L-dopa increases emotion recognition in Parkinson's disease. Neuropsychologia. 2012 Oct;50(12):2869-2879. doi: 10.1016/j.neuropsychologia.2012.08.016. Epub 2012 Aug 28.
Peron J, Biseul I, Leray E, Vicente S, Le Jeune F, Drapier S, Drapier D, Sauleau P, Haegelen C, Verin M. Subthalamic nucleus stimulation affects fear and sadness recognition in Parkinson's disease. Neuropsychology. 2010 Jan;24(1):1-8. doi: 10.1037/a0017433.
Drapier D, Peron J, Leray E, Sauleau P, Biseul I, Drapier S, Le Jeune F, Travers D, Bourguignon A, Haegelen C, Millet B, Verin M. Emotion recognition impairment and apathy after subthalamic nucleus stimulation in Parkinson's disease have separate neural substrates. Neuropsychologia. 2008 Sep;46(11):2796-801. doi: 10.1016/j.neuropsychologia.2008.05.006. Epub 2008 May 20.
Biseul I, Sauleau P, Haegelen C, Trebon P, Drapier D, Raoul S, Drapier S, Lallement F, Rivier I, Lajat Y, Verin M. Fear recognition is impaired by subthalamic nucleus stimulation in Parkinson's disease. Neuropsychologia. 2005;43(7):1054-9. doi: 10.1016/j.neuropsychologia.2004.10.006. Epub 2004 Dec 30.
Dujardin K, Blairy S, Defebvre L, Krystkowiak P, Hess U, Blond S, Destee A. Subthalamic nucleus stimulation induces deficits in decoding emotional facial expressions in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2004 Feb;75(2):202-8.
Schroeder U, Kuehler A, Hennenlotter A, Haslinger B, Tronnier VM, Krause M, Pfister R, Sprengelmeyer R, Lange KW, Ceballos-Baumann AO. Facial expression recognition and subthalamic nucleus stimulation. J Neurol Neurosurg Psychiatry. 2004 Apr;75(4):648-50. doi: 10.1136/jnnp.2003.019794.
Pinkhardt EH, Jurgens R, Lule D, Heimrath J, Ludolph AC, Becker W, Kassubek J. Eye movement impairments in Parkinson's disease: possible role of extradopaminergic mechanisms. BMC Neurol. 2012 Feb 29;12:5. doi: 10.1186/1471-2377-12-5.
Dec-Cwiek M, Tutaj M, Gracies JM, Volkmann J, Rudzinska M, Slowik A, Szczudlik A. Opposite effects of l-dopa and DBS-STN on saccadic eye movements in advanced Parkinson's disease. Neurol Neurochir Pol. 2017 Sep-Oct;51(5):354-360. doi: 10.1016/j.pjnns.2017.06.002. Epub 2017 Jun 24.
Temel Y, Visser-Vandewalle V, Carpenter RHS. Saccadic latency during electrical stimulation of the human subthalamic nucleus. Curr Biol. 2008 May 20;18(10):R412-R414. doi: 10.1016/j.cub.2008.03.008. No abstract available.
Peron J, Dondaine T, Le Jeune F, Grandjean D, Verin M. Emotional processing in Parkinson's disease: a systematic review. Mov Disord. 2012 Feb;27(2):186-99. doi: 10.1002/mds.24025. Epub 2011 Dec 9.
Fischer P, Ossandon JP, Keyser J, Gulberti A, Wilming N, Hamel W, Koppen J, Buhmann C, Westphal M, Gerloff C, Moll CK, Engel AK, Konig P. STN-DBS Reduces Saccadic Hypometria but Not Visuospatial Bias in Parkinson's Disease Patients. Front Behav Neurosci. 2016 May 3;10:85. doi: 10.3389/fnbeh.2016.00085. eCollection 2016.
Nilsson MH, Patel M, Rehncrona S, Magnusson M, Fransson PA. Subthalamic deep brain stimulation improves smooth pursuit and saccade performance in patients with Parkinson's disease. J Neuroeng Rehabil. 2013 Apr 3;10:33. doi: 10.1186/1743-0003-10-33.
Klarendic M, Kaski D. Deep brain stimulation and eye movements. Eur J Neurosci. 2021 Apr;53(7):2344-2361. doi: 10.1111/ejn.14898. Epub 2020 Jul 27.
Fawcett AP, Cunic D, Hamani C, Hodaie M, Lozano AM, Chen R, Hutchison WD. Saccade-related potentials recorded from human subthalamic nucleus. Clin Neurophysiol. 2007 Jan;118(1):155-63. doi: 10.1016/j.clinph.2006.09.016. Epub 2006 Nov 9.
Kovach CK, Adolphs R. Investigating attention in complex visual search. Vision Res. 2015 Nov;116(Pt B):127-41. doi: 10.1016/j.visres.2014.11.011. Epub 2014 Dec 8.
Kovach CK, Sutterer MJ, Rushia SN, Teriakidis A, Jenison RL. Two systems drive attention to rewards. Front Psychol. 2014 Feb 5;5:46. doi: 10.3389/fpsyg.2014.00046. eCollection 2014.
Beylergil SB, Kilbane C, Shaikh AG, Ghasia FF. Eye movements in Parkinson's disease during visual search. J Neurol Sci. 2022 Sep 15;440:120299. doi: 10.1016/j.jns.2022.120299. Epub 2022 May 28.
Waldthaler J, Stock L, Student J, Sommerkorn J, Dowiasch S, Timmermann L. Antisaccades in Parkinson's Disease: A Meta-Analysis. Neuropsychol Rev. 2021 Dec;31(4):628-642. doi: 10.1007/s11065-021-09489-1. Epub 2021 Mar 19.
Clark US, Neargarder S, Cronin-Golomb A. Visual exploration of emotional facial expressions in Parkinson's disease. Neuropsychologia. 2010 Jun;48(7):1901-13. doi: 10.1016/j.neuropsychologia.2010.03.006. Epub 2010 Mar 15.
Hodgson TL, Tiesman B, Owen AM, Kennard C. Abnormal gaze strategies during problem solving in Parkinson's disease. Neuropsychologia. 2002;40(4):411-22. doi: 10.1016/s0028-3932(01)00099-9.
Antoniades CA, Spering M. Eye movements in Parkinson's disease: from neurophysiological mechanisms to diagnostic tools. Trends Neurosci. 2024 Jan;47(1):71-83. doi: 10.1016/j.tins.2023.11.001. Epub 2023 Dec 2.
Zhang Y, Yan A, Liu B, Wan Y, Zhao Y, Liu Y, Tan J, Song L, Gu Y, Liu Z. Oculomotor Performances Are Associated With Motor and Non-motor Symptoms in Parkinson's Disease. Front Neurol. 2018 Nov 28;9:960. doi: 10.3389/fneur.2018.00960. eCollection 2018.
Pretegiani E, Optican LM. Eye Movements in Parkinson's Disease and Inherited Parkinsonian Syndromes. Front Neurol. 2017 Nov 9;8:592. doi: 10.3389/fneur.2017.00592. eCollection 2017.
Pinkhardt EH, Kassubek J. Ocular motor abnormalities in Parkinsonian syndromes. Parkinsonism Relat Disord. 2011 May;17(4):223-30. doi: 10.1016/j.parkreldis.2010.08.004. Epub 2010 Aug 30.
Shibasaki H, Tsuji S, Kuroiwa Y. Oculomotor abnormalities in Parkinson's disease. Arch Neurol. 1979 Jun;36(6):360-4. doi: 10.1001/archneur.1979.00500420070009.
Assogna F, Pontieri FE, Caltagirone C, Spalletta G. The recognition of facial emotion expressions in Parkinson's disease. Eur Neuropsychopharmacol. 2008 Nov;18(11):835-48. doi: 10.1016/j.euroneuro.2008.07.004. Epub 2008 Aug 15.
Pell MD, Leonard CL. Facial expression decoding in early Parkinson's disease. Brain Res Cogn Brain Res. 2005 May;23(2-3):327-40. doi: 10.1016/j.cogbrainres.2004.11.004. Epub 2005 Jan 7.
Adolphs R, Schul R, Tranel D. Intact recognition of facial emotion in Parkinson's disease. Neuropsychology. 1998 Apr;12(2):253-8. doi: 10.1037//0894-4105.12.2.253.
Dodich A, Funghi G, Meli C, Pennacchio M, Longo C, Malaguti MC, Di Giacopo R, Zappini F, Turella L, Papagno C. Deficits in Emotion Recognition and Theory of Mind in Parkinson's Disease Patients With and Without Cognitive Impairments. Front Psychol. 2022 May 13;13:866809. doi: 10.3389/fpsyg.2022.866809. eCollection 2022.
Mattavelli G, Barvas E, Longo C, Zappini F, Ottaviani D, Malaguti MC, Pellegrini M, Papagno C. Facial expressions recognition and discrimination in Parkinson's disease. J Neuropsychol. 2021 Mar;15(1):46-68. doi: 10.1111/jnp.12209. Epub 2020 Apr 22.
Coundouris SP, Adams AG, Grainger SA, Henry JD. Social perceptual function in parkinson's disease: A meta-analysis. Neurosci Biobehav Rev. 2019 Sep;104:255-267. doi: 10.1016/j.neubiorev.2019.07.011. Epub 2019 Jul 20.
Marneweck M, Hammond G. Discriminating facial expressions of emotion and its link with perceiving visual form in Parkinson's disease. J Neurol Sci. 2014 Nov 15;346(1-2):149-55. doi: 10.1016/j.jns.2014.08.014. Epub 2014 Aug 20.
Ariatti A, Benuzzi F, Nichelli P. Recognition of emotions from visual and prosodic cues in Parkinson's disease. Neurol Sci. 2008 Sep;29(4):219-27. doi: 10.1007/s10072-008-0971-9. Epub 2008 Sep 20.
Suzuki A, Hoshino T, Shigemasu K, Kawamura M. Disgust-specific impairment of facial expression recognition in Parkinson's disease. Brain. 2006 Mar;129(Pt 3):707-17. doi: 10.1093/brain/awl011. Epub 2006 Jan 16.
Dujardin K, Blairy S, Defebvre L, Duhem S, Noel Y, Hess U, Destee A. Deficits in decoding emotional facial expressions in Parkinson's disease. Neuropsychologia. 2004;42(2):239-50. doi: 10.1016/s0028-3932(03)00154-4.
Simons G, Pasqualini MC, Reddy V, Wood J. Emotional and nonemotional facial expressions in people with Parkinson's disease. J Int Neuropsychol Soc. 2004 Jul;10(4):521-35. doi: 10.1017/S135561770410413X.
Prenger MTM, Madray R, Van Hedger K, Anello M, MacDonald PA. Social Symptoms of Parkinson's Disease. Parkinsons Dis. 2020 Dec 31;2020:8846544. doi: 10.1155/2020/8846544. eCollection 2020.
Pell MD, Monetta L, Rothermich K, Kotz SA, Cheang HS, McDonald S. Social perception in adults with Parkinson's disease. Neuropsychology. 2014 Nov;28(6):905-16. doi: 10.1037/neu0000090. Epub 2014 Jun 2.
Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J, Lehericy S, Benali H. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res. 2009 Apr 12;199(1):61-75. doi: 10.1016/j.bbr.2008.11.012. Epub 2008 Nov 17.
Arcaro MJ, Schade PF, Vincent JL, Ponce CR, Livingstone MS. Seeing faces is necessary for face-domain formation. Nat Neurosci. 2017 Oct;20(10):1404-1412. doi: 10.1038/nn.4635. Epub 2017 Sep 4.
Kundel HL, Nodine CF, Krupinski EA, Mello-Thoms C. Using gaze-tracking data and mixture distribution analysis to support a holistic model for the detection of cancers on mammograms. Acad Radiol. 2008 Jul;15(7):881-6. doi: 10.1016/j.acra.2008.01.023.
Charness N, Reingold EM, Pomplun M, Stampe DM. The perceptual aspect of skilled performance in chess: evidence from eye movements. Mem Cognit. 2001 Dec;29(8):1146-52. doi: 10.3758/bf03206384.
Wolfe JM, Butcher SJ, Lee C, Hyle M. Changing your mind: on the contributions of top-down and bottom-up guidance in visual search for feature singletons. J Exp Psychol Hum Percept Perform. 2003 Apr;29(2):483-502. doi: 10.1037/0096-1523.29.2.483.
Braak H, Del Tredici K. Invited Article: Nervous system pathology in sporadic Parkinson disease. Neurology. 2008 May 13;70(20):1916-25. doi: 10.1212/01.wnl.0000312279.49272.9f. No abstract available.
Brown RG, Marsden CD. Internal versus external cues and the control of attention in Parkinson's disease. Brain. 1988 Apr;111 ( Pt 2):323-45. doi: 10.1093/brain/111.2.323.
Schurgin MW, Nelson J, Iida S, Ohira H, Chiao JY, Franconeri SL. Eye movements during emotion recognition in faces. J Vis. 2014 Nov 18;14(13):14. doi: 10.1167/14.13.14.
Oberauer K. Working Memory and Attention - A Conceptual Analysis and Review. J Cogn. 2019 Aug 8;2(1):36. doi: 10.5334/joc.58.
D. A. Norman and T. Shallice. Attention to action: Willed and automatic control of behavior. In R. Davidson, G. Schwartz, and S. D, editors, Consciousness and self regulation: Advances in Research, Volume IV. New York: Plenum Press, 1986.
Dirnberger G, Jahanshahi M. Executive dysfunction in Parkinson's disease: a review. J Neuropsychol. 2013 Sep;7(2):193-224. doi: 10.1111/jnp.12028.
Ho MW, Chien SH, Lu MK, Chen JC, Aoh Y, Chen CM, Lane HY, Tsai CH. Impairments in face discrimination and emotion recognition are related to aging and cognitive dysfunctions in Parkinson's disease with dementia. Sci Rep. 2020 Mar 9;10(1):4367. doi: 10.1038/s41598-020-61310-w.
K. E. Thorpe, A. I. Levey, and J. Thomas. Us burden of neurodegenerative disease. Partnership to Fight Chronic Disease (PFCD), pages 1-13, 2021.
Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, Ray Dorsey E, Dahodwala N, Cintina I, Hogan P, Thompson T. Current and projected future economic burden of Parkinson's disease in the U.S. NPJ Parkinsons Dis. 2020 Jul 9;6:15. doi: 10.1038/s41531-020-0117-1. eCollection 2020.
Dorsey ER, Sherer T, Okun MS, Bloem BR. The Emerging Evidence of the Parkinson Pandemic. J Parkinsons Dis. 2018;8(s1):S3-S8. doi: 10.3233/JPD-181474.
Willis AW, Roberts E, Beck JC, Fiske B, Ross W, Savica R, Van Den Eeden SK, Tanner CM, Marras C; Parkinson's Foundation P4 Group. Incidence of Parkinson disease in North America. NPJ Parkinsons Dis. 2022 Dec 15;8(1):170. doi: 10.1038/s41531-022-00410-y.
Kelley R, Flouty O, Emmons EB, Kim Y, Kingyon J, Wessel JR, Oya H, Greenlee JD, Narayanan NS. A human prefrontal-subthalamic circuit for cognitive control. Brain. 2018 Jan 1;141(1):205-216. doi: 10.1093/brain/awx300.
Yugeta A, Terao Y, Fukuda H, Hikosaka O, Yokochi F, Okiyama R, Taniguchi M, Takahashi H, Hamada I, Hanajima R, Ugawa Y. Effects of STN stimulation on the initiation and inhibition of saccade in Parkinson disease. Neurology. 2010 Mar 2;74(9):743-8. doi: 10.1212/WNL.0b013e3181d31e0b.
Isoda M, Hikosaka O. Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J Neurosci. 2008 Jul 9;28(28):7209-18. doi: 10.1523/JNEUROSCI.0487-08.2008.
Waldthaler J, Kruger-Zechlin C, Stock L, Deeb Z, Timmermann L. New insights into facial emotion recognition in Parkinson's disease with and without mild cognitive impairment from visual scanning patterns. Clin Park Relat Disord. 2019 Nov 20;1:102-108. doi: 10.1016/j.prdoa.2019.11.003. eCollection 2019.
Hannula DE, Althoff RR, Warren DE, Riggs L, Cohen NJ, Ryan JD. Worth a glance: using eye movements to investigate the cognitive neuroscience of memory. Front Hum Neurosci. 2010 Oct 8;4:166. doi: 10.3389/fnhum.2010.00166. eCollection 2010.
Frei K. Abnormalities of smooth pursuit in Parkinson's disease: A systematic review. Clin Park Relat Disord. 2020 Dec 17;4:100085. doi: 10.1016/j.prdoa.2020.100085. eCollection 2021.
de Haan B, Morgan PS, Rorden C. Covert orienting of attention and overt eye movements activate identical brain regions. Brain Res. 2008 Apr 14;1204:102-11. doi: 10.1016/j.brainres.2008.01.105. Epub 2008 Feb 19.
Tokushige SI, Matsuda SI, Oyama G, Shimo Y, Umemura A, Sasaki T, Inomata-Terada S, Yugeta A, Hamada M, Ugawa Y, Tsuji S, Hattori N, Terao Y. Effect of subthalamic nucleus deep brain stimulation on visual scanning. Clin Neurophysiol. 2018 Nov;129(11):2421-2432. doi: 10.1016/j.clinph.2018.08.003. Epub 2018 Aug 30.
Fawcett AP, Gonzalez EG, Moro E, Steinbach MJ, Lozano AM, Hutchison WD. Subthalamic nucleus deep brain stimulation improves saccades in Parkinson's disease. Neuromodulation. 2010 Jan;13(1):17-25. doi: 10.1111/j.1525-1403.2009.00246.x. Epub 2009 Nov 13.
Blekher T, Weaver M, Rupp J, Nichols WC, Hui SL, Gray J, Yee RD, Wojcieszek J, Foroud T. Multiple step pattern as a biomarker in Parkinson disease. Parkinsonism Relat Disord. 2009 Aug;15(7):506-10. doi: 10.1016/j.parkreldis.2009.01.002. Epub 2009 Feb 10.
Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000 Jul;80(3):953-78. doi: 10.1152/physrev.2000.80.3.953.
Lieberman A. Depression in Parkinson's disease -- a review. Acta Neurol Scand. 2006 Jan;113(1):1-8. doi: 10.1111/j.1600-0404.2006.00536.x.
Wagenbreth C, Kuehne M, Heinze HJ, Zaehle T. Deep Brain Stimulation of the Subthalamic Nucleus Influences Facial Emotion Recognition in Patients With Parkinson's Disease: A Review. Front Psychol. 2019 Dec 3;10:2638. doi: 10.3389/fpsyg.2019.02638. eCollection 2019.
Argaud S, Verin M, Sauleau P, Grandjean D. Facial emotion recognition in Parkinson's disease: A review and new hypotheses. Mov Disord. 2018 Apr;33(4):554-567. doi: 10.1002/mds.27305. Epub 2018 Feb 23.
Assogna F, Cravello L, Orfei MD, Cellupica N, Caltagirone C, Spalletta G. Alexithymia in Parkinson's disease: A systematic review of the literature. Parkinsonism Relat Disord. 2016 Jul;28:1-11. doi: 10.1016/j.parkreldis.2016.03.021. Epub 2016 Mar 30.
Gray HM, Tickle-Degnen L. A meta-analysis of performance on emotion recognition tasks in Parkinson's disease. Neuropsychology. 2010 Mar;24(2):176-91. doi: 10.1037/a0018104.
Clark US, Neargarder S, Cronin-Golomb A. Specific impairments in the recognition of emotional facial expressions in Parkinson's disease. Neuropsychologia. 2008;46(9):2300-9. doi: 10.1016/j.neuropsychologia.2008.03.014. Epub 2008 Mar 30.
Yip JT, Lee TM, Ho SL, Tsang KL, Li LS. Emotion recognition in patients with idiopathic Parkinson's disease. Mov Disord. 2003 Oct;18(10):1115-22. doi: 10.1002/mds.10497.
Soh C, Hervault M, Chalkley NH, Moore CM, Rohl A, Zhang Q, Uc EY, Greenlee JDW, Wessel JR. The human subthalamic nucleus transiently inhibits active attentional processes. Brain. 2024 Sep 3;147(9):3204-3215. doi: 10.1093/brain/awae068.
Lawson RA, Yarnall AJ, Duncan GW, Breen DP, Khoo TK, Williams-Gray CH, Barker RA, Collerton D, Taylor JP, Burn DJ; ICICLE-PD study group. Cognitive decline and quality of life in incident Parkinson's disease: The role of attention. Parkinsonism Relat Disord. 2016 Jun;27:47-53. doi: 10.1016/j.parkreldis.2016.04.009. Epub 2016 Apr 11.
Botha H, Carr J. Attention and visual dysfunction in Parkinson's disease. Parkinsonism Relat Disord. 2012 Jul;18(6):742-7. doi: 10.1016/j.parkreldis.2012.03.004. Epub 2012 Apr 11.
Stam CJ, Visser SL, Op de Coul AA, De Sonneville LM, Schellens RL, Brunia CH, de Smet JS, Gielen G. Disturbed frontal regulation of attention in Parkinson's disease. Brain. 1993 Oct;116 ( Pt 5):1139-58. doi: 10.1093/brain/116.5.1139.
Wright MJ, Burns RJ, Geffen GM, Geffen LB. Covert orientation of visual attention in Parkinson's disease: an impairment in the maintenance of attention. Neuropsychologia. 1990;28(2):151-9. doi: 10.1016/0028-3932(90)90097-8.
LeWitt PA, Chaudhuri KR. Unmet needs in Parkinson disease: Motor and non-motor. Parkinsonism Relat Disord. 2020 Nov;80 Suppl 1:S7-S12. doi: 10.1016/j.parkreldis.2020.09.024. Epub 2020 Dec 19.
Goldman JG, Vernaleo BA, Camicioli R, Dahodwala N, Dobkin RD, Ellis T, Galvin JE, Marras C, Edwards J, Fields J, Golden R, Karlawish J, Levin B, Shulman L, Smith G, Tangney C, Thomas CA, Troster AI, Uc EY, Coyan N, Ellman C, Ellman M, Hoffman C, Hoffman S, Simmonds D. Cognitive impairment in Parkinson's disease: a report from a multidisciplinary symposium on unmet needs and future directions to maintain cognitive health. NPJ Parkinsons Dis. 2018 Jun 26;4:19. doi: 10.1038/s41531-018-0055-3. eCollection 2018.
Dubois B, Pillon B. Cognitive deficits in Parkinson's disease. J Neurol. 1997 Jan;244(1):2-8. doi: 10.1007/pl00007725.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
0082-25-FB
Identifier Type: -
Identifier Source: org_study_id