Investigating Inhibitory Control Networks in Parkinson's Disease

NCT ID: NCT04735458

Last Updated: 2025-12-02

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Clinical Phase

NA

Total Enrollment

140 participants

Study Classification

INTERVENTIONAL

Study Start Date

2021-04-01

Study Completion Date

2028-03-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The purpose of this study is to investigate the brain activity associated with non-motor symptoms of movement disorders, including Parkinson's disease and essential tremor. These movement disorders commonly have significant non-motor features also, including depression, cognitive impairment, decreased attention, and slower processing speeds. The investigators are interested in the brain activity associated with these symptoms, and perform recordings of the surface of the brain, in addition to the typical recordings the investigators perform, during routine deep brain stimulation (DBS) surgery.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Movement disorders are a prominent cause of disability worldwide. In the United States, it is estimated that more than 4 million people suffer from Parkinson's disease (PD), essential tremor (ET), and dystonia, some of the most prevalent of neurologic disorders. Of these, PD is the most common, and is primarily characterized by tremor, rigidity, and bradykinesia. However, many patients also have prominent non-motor features, including depression and cognitive impairment, with deficiencies in processing speed, memory, attention, and learning. One of the most debilitating cognitive deficiencies is in response inhibition (RI), or the inability to suppress a habitual action. PD patients have significant difficulty with RI, and report its substantial contribution in limiting their quality of life. While some studies show that dopamine can improve this aspect of cognitive function, many patients remain considerably impaired.

RI manifests clinically in many different and important ways, with reduced mental flexibility, task-switching, and concentration. RI may also contribute to motor impairment, with gait dysfunction, falls, and freezing of gait. Unfortunately, these features of PD and RI are less well-studied and lack effective treatment options, necessitating that new treatments be investigated. Deep brain stimulation (DBS), while a highly effective treatment for motor manifestations, is essentially ineffective for, and can even worsen cognition, with few studies currently investigating how different parameters may improve NMS. In an effort to begin addressing these debilitating features of PD, the investigators propose to study RI in patients with movement disorders, and to correlate movement and cognition with underlying neural electrophysiology before and during tasks of motion and response inhibition.

During routine DBS surgery, the stimulating electrode is implanted with the aid of intraoperative recordings in the awake state. These routine recordings enable neurologists and neurosurgeons to directly observe neuronal firing in the brain, identifying characteristic patterns to delineate anatomic structures. Once in place, the DBS electrode is tested using stimulation parameters known to be clinically efficacious for motor impairment. This allows acute, intraoperative testing for therapeutic benefit and side effects, and give information for how a patient will respond to the therapy once the cranial electrode is connected to the battery and turned on.

In addition to this routine recording and stimulation, this setting also provides a unique opportunity to study neural electrophysiology, with minimal increased risk. By measuring brain activity in the outer layers (cortex) as well as from the DBS electrode itself, while patients perform various tasks, it is possible to correlate behavioral function and neural activity. Our center, and several others, already have research paradigms in place to achieve these goals, by placing a subdural strip electrode over cortex prior to placing the DBS lead. These strip electrodes lie along the surface of the brain, and have historically been used for several decades to perform seizure mapping, typically as an array of electrodes placed via a burr hole. Their use has only more recently been implemented for investigation of neural circuits during DBS surgery, however, their safety in this specific setting is now well-established, and their temporary placement is currently being performed in similar studies at this institution. However, though previous studies have placed these strips over prefrontal areas, the vast majority of research in this area is focused on motor circuits, with placement over sensorimotor cortex. In order to study NMS, strips will be placed over prefrontal cortex, with recordings made during various motor and cognitive tasks and during different stimulation patterns.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Parkinson Disease

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

SINGLE

Participants

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Treatment

Parkinson's Disease Patients receiving DBS electrodes

Group Type EXPERIMENTAL

Procedure/Surgery: Response Inhibition and Deep Brain Stimulation in Parkinson's disease

Intervention Type OTHER

After creation of the burr hole and prior to DBS electrode placement, 1-2 subdural strip electrodes will be placed anteriorly or posteriorly from the cranial opening. These electrodes are routinely placed using this technique for seizure mapping, with arrays of electrodes (up to 6) being placed around the perimeter of the opening.14 Subdural strips vary in length and contact size (e.g., the 6-contact Ad-Tech strip), and are currently placed predominantly for studies of sensorimotor function,13 including at our institution (IRB-140327003). Placement over prefrontal areas is performed at other institutions.11-13 The DBS surgery will then proceed according to routine practice, and following lead placement in the optimal desired location, the research task paradigm will begin.

Control

Control subjects will be non-Parkinson's Disease patients with essential tremor

Group Type NO_INTERVENTION

No interventions assigned to this group

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Procedure/Surgery: Response Inhibition and Deep Brain Stimulation in Parkinson's disease

After creation of the burr hole and prior to DBS electrode placement, 1-2 subdural strip electrodes will be placed anteriorly or posteriorly from the cranial opening. These electrodes are routinely placed using this technique for seizure mapping, with arrays of electrodes (up to 6) being placed around the perimeter of the opening.14 Subdural strips vary in length and contact size (e.g., the 6-contact Ad-Tech strip), and are currently placed predominantly for studies of sensorimotor function,13 including at our institution (IRB-140327003). Placement over prefrontal areas is performed at other institutions.11-13 The DBS surgery will then proceed according to routine practice, and following lead placement in the optimal desired location, the research task paradigm will begin.

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Eligible for surgery based on multi-disciplinary consensus review
* Have a diagnosis of Parkinson's disease or Essential Tremor
* Have a diagnosis of medically-refractory movement disorder (Parkinson's disease, Essential Tremor, or dystonia)
* Willingness to participate in the paradigms described in the protocol

Exclusion Criteria

* Inability to provide full and informed consent
* Age younger than 18
* Are not able to participate in study-related activities
* History of prior ischemic/hemorrhagic stroke, subdural hemorrhage, or seizure
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Institute of Neurological Disorders and Stroke (NINDS)

NIH

Sponsor Role collaborator

University of Alabama at Birmingham

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

J. Nicole Bentley

Principle Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Nicole Bentley, MD

Role: PRINCIPAL_INVESTIGATOR

University of Alabama at Birmingham

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Alabama at Birmingham

Birmingham, Alabama, United States

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

United States

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Nicole Bentley, MD

Role: CONTACT

205-975-0011

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Nicole Bentley, MD

Role: primary

205-975-0011

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

1K23NS117735-01A1

Identifier Type: NIH

Identifier Source: secondary_id

View Link

IRB300003605

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.