The Role of Cerebellar Hyperactivity in Parkinson's Disease
NCT ID: NCT02349789
Last Updated: 2019-02-15
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
11 participants
OBSERVATIONAL
2015-01-28
2017-09-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Treadmill Walking in Individuals With Dementia With Lewy Bodies and Huntington's Disease
NCT02268617
Gait Control in Parkinson Disease
NCT05908279
Stochastic Resonance Stimulation Effect on Gait Stability in Parkinson Disease
NCT06829342
Stability and Balance in Locomotion Through Exercise
NCT01856244
Cholinergic Mechanisms of Gait Dysfunction in Parkinson's Disease
NCT02458430
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Recent work has shown that the cerebellum is hyperactive in PD patients, though it is not known whether this activity is compensatory (i.e. reduces motor impairments) or pathological (i.e. causes motor impairments). One idea is that increased cerebellar activity, affecting cerebral motor areas, compensates for the reduced drive from the basal ganglia (Wu et al. 2013). Alternatively, it is possible that cerebellar hyperactivity is pathological, as recent work suggests that cerebellar activity may be partially responsible for the generation of Parkinsonian tremor (Helmich et al. 2012). One approach to answer this question is to use non-invasive brain stimulation techniques to decrease the activity of the cerebellum in PD patients and determine if they improve or worsen their gait pattern.
Non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are able to alter the excitability of brain pathways. Applying these techniques over the motor cortex, improved motor function in different patient groups, including stroke and PD (Benninger et al. 2010). Only two studies have investigated the effect of modulation of cerebellar-motor cortex excitability on motor function in PD patients. That is, 1 Hz repetitive TMS (inhibitory rTMS) over the cerebellum improved gross arm movements, but worsened fine motor skills17. Furthermore, a two-week continuous theta burst stimulation TMS protocol decreased levodopa-induced dyskinesias (Koch et al. 2009). These studies only investigated the effects on the upper extremities. The cerebellum is also hyperactive during gait (Hanakawa et al. 1999; del Olmo et al. 2006), but whether modulation of cerebellar excitability can improve gait deficits in PD patients is currently unknown.
Non-invasive brain stimulation can also be used to study the connection between the cerebellum and the motor cortex via using paired-pulse TMS. Specifically, cerebellar stimulation 5 ms before motor cortex stimulation leads to a reduction in the amplitude of motor-evoked potentials (MEPs), a phenomenon referred to as cerebellar-brain inhibition (CBI) (Pinto et al. 2001). This measure of CBI is abnormal in PD patients-it is reduced at rest, but increases with muscle contraction (Ni et al. 2010).
Gait impairments in PD are often resistant to treatment, particularly as the disease progresses. Therefore, insight in the pathophysiology of gait disturbances is essential for improving treatment options and quality of life for PD patients. This study will answer the question of whether cerebellar hyperactivity alleviates or worsens gait deficits in PD patients. If cerebellar hyperactivity in PD is compensatory, anodal (i.e. excitatory) tDCS should improve gait in PD patients, whereas cathodal (i.e. inhibitory) tDCS will make matters worse. In contrast, if cerebellar hyperactivity is pathological, cathodal tDCS will improve gait and anodal tDCS will worsen it. Hence, this study will improve the fundamental understanding of gait pathophysiology in PD patients. The investigators will focus on the aspects of gait that are particularly affected in PD and associated with fall risk, such as stride length and gait speed (Paul et al. 2013). In this way, this study may identify the cerebellum as a potential new target for treatment, opening up new possibilities improving gait and balance disturbances in PD.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
CROSS_SECTIONAL
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Capable of walking for 5 minutes.
Exclusion Criteria
* Congestive heart failure.
* Peripheral artery disease with claudication.
* Cancer. Pulmonary or renal failure. Unstable angina. Uncontrolled hypertension (\> 190/110 mmHg). Brain injury. History of seizure or a family history of epilepsy. Metal anywhere in the head except the mouth. Cardiac pacemakers. Cochlear implants. Implanted medication pump. Heart disease. Intracardiac lines. Increased intracranial pressure, such as after infarctions or trauma. Currently taking tricyclic anti-depressants or neuroleptic medication. History of head trauma. History of respiratory disease. Dementia (Montreal Cognitive Assessment \< 26; Frontal Assessment Battery \< 13). Orthopedic or pain conditions. Pregnancy.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Johns Hopkins University
OTHER
University of Twente
OTHER
Hugo W. Moser Research Institute at Kennedy Krieger, Inc.
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Amy J. Bastian, Ph.D.
Ph.D., PT
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Amy Bastian, PT, PhD
Role: PRINCIPAL_INVESTIGATOR
Hugo W. Moser Research Institute at Kennedy Krieger, Inc.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Kennedy Krieger Institute
Baltimore, Maryland, United States
Countries
Review the countries where the study has at least one active or historical site.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IRB00052263
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.