Mechanism of Nitric Oxide on Ventilator-induced Diaphragm Dysfunction with Extracorporeal Membrane Lung Assistance

NCT ID: NCT06660784

Last Updated: 2024-10-28

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

ACTIVE_NOT_RECRUITING

Total Enrollment

80 participants

Study Classification

OBSERVATIONAL

Study Start Date

2024-01-16

Study Completion Date

2025-12-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The goal of this clinical trial is to explore the effect of NO treatment on diaphragm function after mechanical ventilation with ECMO assistance. We expect to enroll a total of 80 patients who will receive mechanical ventilation and mechanical ventilation combined with ECMO treatment. Depending on the indication, they will be given NO treatment or not. In ECMO assisted mechanical ventilation + NO treatment group, the subjects will be randomly assigned to NO treatment via ventilator or membrane oxygenator. The main questions it aims to answer are:

1. Observing the influences and potential therapeutic effects of different NO insertion methods through ventilator or membrane oxygenator on the occurrence and development of ventilator-induced diaphragm (VIDD) dysfunction during ECMO assisted mechanical ventilation.
2. Exploring the potential key molecular mechanisms of NO treatment on the occurrence and development of VIDD after ECMO assisted mechanical ventilation.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Tracheal Intubation Extracorporeal Membrane Oxygenation Nitric Oxide Ventilator-induced Diaphragmatic Dysfunction

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Nitric Oxide

Depending on the indication, the subjects will be given NO treatment or not. In ECMO assisted mechanical ventilation + NO treatment group, the subjects will be randomly assigned to NO treatment via ventilator or membrane oxygenator.

Intervention Type DRUG

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Age ≥ 18 years;
2. Tracheal intubation in our emergency department;
3. Expected survival time ≥ 72 hours;
4. Family members agree to participate and sign the informed consent form.

Exclusion Criteria

1. Pregnant women;
2. Patients with diaphragmatic hernia or other known diaphragmatic diseases and injuries;
3. Patients with mechanical ventilation treatment within 3 months;
4. Thoracic or abdominal tumor invading the diaphragm;
5. A large amount of ascites raises the diaphragm position;
6. Upper respiratory tract malformation;
7. Trauma leading to chest collapse, etc.
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Zhongnan Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Zhongnan Hospital of Wuhan University

Wuhan, Hubei, China

Site Status

Countries

Review the countries where the study has at least one active or historical site.

China

References

Explore related publications, articles, or registry entries linked to this study.

Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012 Jan 18;13(2):89-102. doi: 10.1038/nrm3270.

Reference Type BACKGROUND
PMID: 22251901 (View on PubMed)

Jiao G, Hao L, Wang M, Zhong B, Yu M, Zhao S, Wang P, Feng R, Tan S, Chen L. Upregulation of endoplasmic reticulum stress is associated with diaphragm contractile dysfunction in a rat model of sepsis. Mol Med Rep. 2017 Jan;15(1):366-374. doi: 10.3892/mmr.2016.6014. Epub 2016 Dec 9.

Reference Type BACKGROUND
PMID: 27959404 (View on PubMed)

Maes K, Stamiris A, Thomas D, Cielen N, Smuder A, Powers SK, Leite FS, Hermans G, Decramer M, Hussain SN, Gayan-Ramirez G. Effects of controlled mechanical ventilation on sepsis-induced diaphragm dysfunction in rats. Crit Care Med. 2014 Dec;42(12):e772-82. doi: 10.1097/CCM.0000000000000685.

Reference Type BACKGROUND
PMID: 25402297 (View on PubMed)

Liu YY, Li LF. Ventilator-induced diaphragm dysfunction in critical illness. Exp Biol Med (Maywood). 2018 Dec;243(17-18):1329-1337. doi: 10.1177/1535370218811950. Epub 2018 Nov 19.

Reference Type BACKGROUND
PMID: 30453774 (View on PubMed)

Gallot YS, Bohnert KR. Confounding Roles of ER Stress and the Unfolded Protein Response in Skeletal Muscle Atrophy. Int J Mol Sci. 2021 Mar 4;22(5):2567. doi: 10.3390/ijms22052567.

Reference Type BACKGROUND
PMID: 33806433 (View on PubMed)

Bohnert KR, McMillan JD, Kumar A. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol. 2018 Jan;233(1):67-78. doi: 10.1002/jcp.25852. Epub 2017 May 16.

Reference Type BACKGROUND
PMID: 28177127 (View on PubMed)

Afroze D, Kumar A. ER stress in skeletal muscle remodeling and myopathies. FEBS J. 2019 Jan;286(2):379-398. doi: 10.1111/febs.14358. Epub 2017 Dec 29.

Reference Type BACKGROUND
PMID: 29239106 (View on PubMed)

Shen J, Prywes R. Dependence of site-2 protease cleavage of ATF6 on prior site-1 protease digestion is determined by the size of the luminal domain of ATF6. J Biol Chem. 2004 Oct 8;279(41):43046-51. doi: 10.1074/jbc.M408466200. Epub 2004 Aug 6.

Reference Type BACKGROUND
PMID: 15299016 (View on PubMed)

Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001 Dec 28;107(7):881-91. doi: 10.1016/s0092-8674(01)00611-0.

Reference Type BACKGROUND
PMID: 11779464 (View on PubMed)

Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999 Nov;10(11):3787-99. doi: 10.1091/mbc.10.11.3787.

Reference Type BACKGROUND
PMID: 10564271 (View on PubMed)

Oida Y, Shimazawa M, Imaizumi K, Hara H. Involvement of endoplasmic reticulum stress in the neuronal death induced by transient forebrain ischemia in gerbil. Neuroscience. 2008 Jan 2;151(1):111-9. doi: 10.1016/j.neuroscience.2007.10.047. Epub 2007 Nov 13.

Reference Type BACKGROUND
PMID: 18082969 (View on PubMed)

Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, Ushio Y, Mori M. Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ. 2004 Apr;11(4):403-15. doi: 10.1038/sj.cdd.4401365.

Reference Type BACKGROUND
PMID: 14752508 (View on PubMed)

Mamady H, Storey KB. Coping with the stress: expression of ATF4, ATF6, and downstream targets in organs of hibernating ground squirrels. Arch Biochem Biophys. 2008 Sep 1;477(1):77-85. doi: 10.1016/j.abb.2008.05.006. Epub 2008 May 25.

Reference Type BACKGROUND
PMID: 18541136 (View on PubMed)

Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11269-74. doi: 10.1073/pnas.0400541101. Epub 2004 Jul 26.

Reference Type BACKGROUND
PMID: 15277680 (View on PubMed)

Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 2006 Feb;34(Pt 1):7-11. doi: 10.1042/BST20060007.

Reference Type BACKGROUND
PMID: 16246168 (View on PubMed)

Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999 Jan 21;397(6716):271-4. doi: 10.1038/16729.

Reference Type BACKGROUND
PMID: 9930704 (View on PubMed)

Bommiasamy H, Popko B. Animal models in the study of the unfolded protein response. Methods Enzymol. 2011;491:91-109. doi: 10.1016/B978-0-12-385928-0.00006-7.

Reference Type BACKGROUND
PMID: 21329796 (View on PubMed)

Ashraf NU, Sheikh TA. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease. Free Radic Res. 2015;49(12):1405-18. doi: 10.3109/10715762.2015.1078461. Epub 2015 Aug 25.

Reference Type BACKGROUND
PMID: 26223319 (View on PubMed)

Coggan AR, Peterson LR. Dietary Nitrate Enhances the Contractile Properties of Human Skeletal Muscle. Exerc Sport Sci Rev. 2018 Oct;46(4):254-261. doi: 10.1249/JES.0000000000000167.

Reference Type BACKGROUND
PMID: 30001275 (View on PubMed)

Colussi C, Mozzetta C, Gurtner A, Illi B, Rosati J, Straino S, Ragone G, Pescatori M, Zaccagnini G, Antonini A, Minetti G, Martelli F, Piaggio G, Gallinari P, Steinkuhler C, Clementi E, Dell'Aversana C, Altucci L, Mai A, Capogrossi MC, Puri PL, Gaetano C. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19183-7. doi: 10.1073/pnas.0805514105. Epub 2008 Dec 1.

Reference Type BACKGROUND
PMID: 19047631 (View on PubMed)

Hu RG, Sheng J, Qi X, Xu Z, Takahashi TT, Varshavsky A. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature. 2005 Oct 13;437(7061):981-6. doi: 10.1038/nature04027.

Reference Type BACKGROUND
PMID: 16222293 (View on PubMed)

Rassier DE, Kashina A. Protein arginylation of cytoskeletal proteins in the muscle: modifications modifying function. Am J Physiol Cell Physiol. 2019 May 1;316(5):C668-C677. doi: 10.1152/ajpcell.00500.2018. Epub 2019 Feb 21.

Reference Type BACKGROUND
PMID: 30789755 (View on PubMed)

Cornachione AS, Leite FS, Wang J, Leu NA, Kalganov A, Volgin D, Han X, Xu T, Cheng YS, Yates JR 3rd, Rassier DE, Kashina A. Arginylation of myosin heavy chain regulates skeletal muscle strength. Cell Rep. 2014 Jul 24;8(2):470-6. doi: 10.1016/j.celrep.2014.06.019. Epub 2014 Jul 10.

Reference Type BACKGROUND
PMID: 25017061 (View on PubMed)

Gupta MP, Samant SA, Smith SH, Shroff SG. HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity. J Biol Chem. 2008 Apr 11;283(15):10135-46. doi: 10.1074/jbc.M710277200. Epub 2008 Feb 4.

Reference Type BACKGROUND
PMID: 18250163 (View on PubMed)

Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008 Feb;7(2):156-67. doi: 10.1038/nrd2466.

Reference Type BACKGROUND
PMID: 18167491 (View on PubMed)

Lundberg JO, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med. 2004 Aug 1;37(3):395-400. doi: 10.1016/j.freeradbiomed.2004.04.027.

Reference Type BACKGROUND
PMID: 15223073 (View on PubMed)

Kobzik L, Reid MB, Bredt DS, Stamler JS. Nitric oxide in skeletal muscle. Nature. 1994 Dec 8;372(6506):546-8. doi: 10.1038/372546a0.

Reference Type BACKGROUND
PMID: 7527495 (View on PubMed)

Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001 Jan;81(1):209-237. doi: 10.1152/physrev.2001.81.1.209.

Reference Type BACKGROUND
PMID: 11152758 (View on PubMed)

Malfertheiner MV, Garrett A, Passmore M, Haymet AB, Webb RI, Von Bahr V, Millar JE, Schneider BA, Obonyo NG, Black D, Bouquet M, Bartnikowski N, Suen JY, Fraser JF. The effects of nitric oxide on coagulation and inflammation in ex vivo models of extracorporeal membrane oxygenation and cardiopulmonary bypass. Artif Organs. 2023 Oct;47(10):1581-1591. doi: 10.1111/aor.14608. Epub 2023 Jul 19.

Reference Type BACKGROUND
PMID: 37395735 (View on PubMed)

Toomasian JM, Jeakle MMP, Langley MW, Poling CJ, Lautner G, Lautner-Csorba O, Meyerhoff MM, Carr BJD, Rojas-Pena A, Haft JW, Bartlett RH. Nitric Oxide Attenuates the Inflammatory Effects of Air During Extracorporeal Circulation. ASAIO J. 2020 Jul;66(7):818-824. doi: 10.1097/MAT.0000000000001057.

Reference Type BACKGROUND
PMID: 31425266 (View on PubMed)

Ciampa AR, de Prati AC, Amelio E, Cavalieri E, Persichini T, Colasanti M, Musci G, Marlinghaus E, Suzuki H, Mariotto S. Nitric oxide mediates anti-inflammatory action of extracorporeal shock waves. FEBS Lett. 2005 Dec 19;579(30):6839-45. doi: 10.1016/j.febslet.2005.11.023. Epub 2005 Nov 28.

Reference Type BACKGROUND
PMID: 16325181 (View on PubMed)

Lahtinen M, Melki V, Adamik B, Khamis H, Borowiec JW. Nitric oxide and inflammatory response in simulated extracorporeal circulation. Thorac Cardiovasc Surg. 2003 Jun;51(3):130-7. doi: 10.1055/s-2003-40318.

Reference Type BACKGROUND
PMID: 12833201 (View on PubMed)

Pichugin VV, Domnin SE, Sandalkin EV, Fedorov SA, Bober VV, Zhurko SA. Nitrogen Oxide-Added Extracorporeal Membrane Oxygenation for Treating Critical Acute Heart Failure after Cardiac Surgery. Sovrem Tekhnologii Med. 2021;13(4):57-62. doi: 10.17691/stm2021.13.4.06. Epub 2021 Aug 28.

Reference Type BACKGROUND
PMID: 34603764 (View on PubMed)

Psotova H, Ostadal P, Mlcek M, Kruger A, Janotka M, Vondrakova D, Svoboda T, Hrachovina M, Taborsky L, Dudkova V, Strunina S, Kittnar O, Neuzil P. Ischemic Postconditioning and Nitric Oxide Administration Failed to Confer Protective Effects in a Porcine Model of Extracorporeal Cardiopulmonary Resuscitation. Artif Organs. 2016 Apr;40(4):353-9. doi: 10.1111/aor.12556. Epub 2015 Sep 28.

Reference Type BACKGROUND
PMID: 26412075 (View on PubMed)

Moury PH, Zunarelli R, Bailly S, Durand Z, Behouche A, Garein M, Durand M, Verges S, Albaladejo P. Diaphragm Thickening During Venoarterial Extracorporeal Membrane Oxygenation Weaning: An Observational Prospective Study. J Cardiothorac Vasc Anesth. 2021 Jul;35(7):1981-1988. doi: 10.1053/j.jvca.2020.10.047. Epub 2020 Oct 29.

Reference Type BACKGROUND
PMID: 33218955 (View on PubMed)

McDonald CI, Fraser JF, Coombes JS, Fung YL. Oxidative stress during extracorporeal circulation. Eur J Cardiothorac Surg. 2014 Dec;46(6):937-43. doi: 10.1093/ejcts/ezt637. Epub 2014 Jan 30.

Reference Type BACKGROUND
PMID: 24482384 (View on PubMed)

Kumar R, Coggan AR, Ferreira LF. Nitric oxide and skeletal muscle contractile function. Nitric Oxide. 2022 May 1;122-123:54-61. doi: 10.1016/j.niox.2022.04.001. Epub 2022 Apr 8.

Reference Type BACKGROUND
PMID: 35405336 (View on PubMed)

van den Berg M, Hooijman PE, Beishuizen A, de Waard MC, Paul MA, Hartemink KJ, van Hees HWH, Lawlor MW, Brocca L, Bottinelli R, Pellegrino MA, Stienen GJM, Heunks LMA, Wust RCI, Ottenheijm CAC. Diaphragm Atrophy and Weakness in the Absence of Mitochondrial Dysfunction in the Critically Ill. Am J Respir Crit Care Med. 2017 Dec 15;196(12):1544-1558. doi: 10.1164/rccm.201703-0501OC.

Reference Type BACKGROUND
PMID: 28787181 (View on PubMed)

Zhou XL, Wei XJ, Li SP, Liu RN, Yu MX, Zhao Y. Interactions between Cytosolic Phospholipase A2 Activation and Mitochondrial Reactive Oxygen Species Production in the Development of Ventilator-Induced Diaphragm Dysfunction. Oxid Med Cell Longev. 2019 Apr 18;2019:2561929. doi: 10.1155/2019/2561929. eCollection 2019.

Reference Type BACKGROUND
PMID: 31178955 (View on PubMed)

Azuelos I, Jung B, Picard M, Liang F, Li T, Lemaire C, Giordano C, Hussain S, Petrof BJ. Relationship between Autophagy and Ventilator-induced Diaphragmatic Dysfunction. Anesthesiology. 2015 Jun;122(6):1349-61. doi: 10.1097/ALN.0000000000000656.

Reference Type BACKGROUND
PMID: 25828754 (View on PubMed)

Karagiannidis C, Lubnow M, Philipp A, Riegger GA, Schmid C, Pfeifer M, Mueller T. Autoregulation of ventilation with neurally adjusted ventilatory assist on extracorporeal lung support. Intensive Care Med. 2010 Dec;36(12):2038-44. doi: 10.1007/s00134-010-1982-6. Epub 2010 Aug 6.

Reference Type BACKGROUND
PMID: 20689930 (View on PubMed)

Riccardo Pinciroli, Alfio Bronco, Alberto Lucchini, and Giuseppe Foti.Acute Respiratory Failure: Ventilatory Support and Extracorporeal Membrane Oxygenation (ECMO).Springer International Publishing AG, part of Springer Nature.2019;51:733-748.

Reference Type BACKGROUND

Doorduin J, Roesthuis LH, Jansen D, van der Hoeven JG, van Hees HWH, Heunks LMA. Respiratory Muscle Effort during Expiration in Successful and Failed Weaning from Mechanical Ventilation. Anesthesiology. 2018 Sep;129(3):490-501. doi: 10.1097/ALN.0000000000002256.

Reference Type BACKGROUND
PMID: 29771711 (View on PubMed)

Watson AC, Hughes PD, Louise Harris M, Hart N, Ware RJ, Wendon J, Green M, Moxham J. Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med. 2001 Jul;29(7):1325-31. doi: 10.1097/00003246-200107000-00005.

Reference Type BACKGROUND
PMID: 11445679 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

PTXM2024028

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.