Results of Progressive Resistance Training in Older Type 2 Diabetic Patients With Sarcopenia

NCT ID: NCT06337357

Last Updated: 2025-05-22

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Clinical Phase

NA

Total Enrollment

80 participants

Study Classification

INTERVENTIONAL

Study Start Date

2024-04-01

Study Completion Date

2025-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

A randomized controlled clinical trial that will test how progressive resistance training will impact outcomes of sarcopenia in older patients with type 2 diabetes who have been diagnosed as sarcopenia. The intervention will be 12 weeks in duration with approximately 24 sessions of resistance exercises. Outcome measures will be collected at baseline, 4, 8 weeks and 12 weeks.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Sarcopenia, prevalent among geriatric populations, involves the progressive loss of muscle mass and decline in muscular function. This age-related condition is associated with higher susceptibility to falls, comorbidities, and mortality. Resistance training emerges as a non-pharmacological intervention proven to alleviate and potentially delay the progression of sarcopenia. However, there are still few studies investigating its effects on outcomes in older patients with diabetes mellitus.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Sarcopenia Diabetes

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Intervention group

The intervention group receives supervised resistance training instructions and baseline treatment for sarcopenia and diabetes:

* Resistance training with elastic bands aims to increase muscle strength and muscle mass of the upper and lower limbs. Training duration 12 weeks, frequency 2 times/week, intensity gradually increases.
* Baseline treatment for diabetes and sarcopenia: Recommendations according to American Diabetes Association guidelines which include instructions to follow the diet and exercises as recommended for older type 2 diabetic patients and baseline treatment for sarcopenia (education about sarcopenia and treatment measures such as diet and exercise) and provide basic information on resistance training.

Group Type EXPERIMENTAL

Progressive Resistance Training

Intervention Type BEHAVIORAL

Progressive resistance training includes face-to-face education on resistance training:

Resistance exercises with elastic bands include 9 exercises for 1 course. During the first 4 weeks, the patient exercises twice a week with a level of exertion according to Borg's category-ratio 10 (CR10) scale of 4-5 points. For the next 4 weeks, the patient exercises twice a week with Borg's CR10 exertion level of 6-7 points. In the last 4 weeks, the patient exercises twice a week with Borg's CR10 exertion level of 8-9 points.

The three-month intervention involves twelve weekly calls, with a focus on building rapport (e.g. providing feedback on the baseline assessment); education reinforcement on resistance training; and skill-building (e.g. self-monitoring and resistance training diary). The emphasis is on helping participants to gain the knowledge and skills necessary to achieve targeted intensity. Every 4 weeks, all patients are re-visited by investigators in the hospital.

Control group

The control group receives the baseline treatment for diabetes and sarcopenia:

\- Recommendations according to American Diabetes Association guidelines which include instructions to follow the diet and exercises as recommended for older type 2 diabetic patients and baseline treatment for sarcopenia (education about sarcopenia and treatment measures such as diet and exercise) and provide basic information on resistance training.

Group Type NO_INTERVENTION

No interventions assigned to this group

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Progressive Resistance Training

Progressive resistance training includes face-to-face education on resistance training:

Resistance exercises with elastic bands include 9 exercises for 1 course. During the first 4 weeks, the patient exercises twice a week with a level of exertion according to Borg's category-ratio 10 (CR10) scale of 4-5 points. For the next 4 weeks, the patient exercises twice a week with Borg's CR10 exertion level of 6-7 points. In the last 4 weeks, the patient exercises twice a week with Borg's CR10 exertion level of 8-9 points.

The three-month intervention involves twelve weekly calls, with a focus on building rapport (e.g. providing feedback on the baseline assessment); education reinforcement on resistance training; and skill-building (e.g. self-monitoring and resistance training diary). The emphasis is on helping participants to gain the knowledge and skills necessary to achieve targeted intensity. Every 4 weeks, all patients are re-visited by investigators in the hospital.

Intervention Type BEHAVIORAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Type 2 diabetic patients diagnosed using American Diabetes Association 2022 criteria
* HbA1c ≥ 7.0 and ≤ 8.5%
* Sarcopenia diagnosed using criteria from the Asian Working Group for Sarcopenia 2019
* Age ≥ 60 and ≤ 80

Exclusion Criteria

* Acute diabetic complications
* Patients are in the acute phase of musculoskeletal disorders: acute gout, progressing low-grade arthritis, acute joint pain due to joint degeneration, sciatic pain, and infectious arthritis.
* Patients suffer from conditions significantly affecting cognition and mobility: sequelae of stroke (with weakness, limb paralysis), muscular weakness, limb disabilities, severe heart failure, severe cognitive decline, and psychiatric disorders.
* Patients have been bedridden due to illness for more than 1 month within the past 3 months up to the recruitment time.
* Patients with cardiovascular diseases: chest pain, uncontrolled blood pressure ≥160/100 mmHg, untreated cardiac arrhythmia, a history of congestive heart failure, severe valvular heart disease, myocarditis or pericarditis, and hypertrophic cardiomyopathy.
* Renal failure with estimated glomerular function rate (Modification of Diet in Renal Disease equation) \< 60 ml/min/m3 or serum creatinine ≥ 130 µmol/l
* On treatment with Sodium-glucose cotransporter 2 inhibitors (SGLT2i)
Minimum Eligible Age

60 Years

Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Geriatric Hospital

OTHER_GOV

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Trinh Ngoc Anh

Endocrinologist, Principal Investigator and Sponsor

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Huyen TT Vu, PhD

Role: STUDY_CHAIR

National Geriatric Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

National Geriatric Hospital

Hanoi, , Vietnam

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Vietnam

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Anh N Trinh, MD

Role: CONTACT

(+84) 912760684

Tam N Nguyen, PhD

Role: CONTACT

+84979221905

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Huyen TT Vu, PhD

Role: primary

+84913531579

References

Explore related publications, articles, or registry entries linked to this study.

Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes. 2019 Jul 8;12:1057-1072. doi: 10.2147/DMSO.S186600. eCollection 2019.

Reference Type BACKGROUND
PMID: 31372016 (View on PubMed)

Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M, Arai H. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020 Mar;21(3):300-307.e2. doi: 10.1016/j.jamda.2019.12.012. Epub 2020 Feb 4.

Reference Type BACKGROUND
PMID: 32033882 (View on PubMed)

Kerner W, Bruckel J; German Diabetes Association. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes. 2014 Jul;122(7):384-6. doi: 10.1055/s-0034-1366278. Epub 2014 Jul 11. No abstract available.

Reference Type BACKGROUND
PMID: 25014088 (View on PubMed)

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019 Jan 1;48(1):16-31. doi: 10.1093/ageing/afy169.

Reference Type BACKGROUND
PMID: 30312372 (View on PubMed)

Chen LK. The vicious cycle in the development of diabetes mellitus and sarcopenia in older persons. Arch Gerontol Geriatr. 2021 Jul-Aug;95:104437. doi: 10.1016/j.archger.2021.104437. Epub 2021 May 19. No abstract available.

Reference Type BACKGROUND
PMID: 34029928 (View on PubMed)

Purnamasari D, Tetrasiwi EN, Kartiko GJ, Astrella C, Husam K, Laksmi PW. Sarcopenia and Chronic Complications of Type 2 Diabetes Mellitus. Rev Diabet Stud. 2022 Sep 28;18(3):157-165. doi: 10.1900/RDS.2022.18.157.

Reference Type BACKGROUND
PMID: 36309772 (View on PubMed)

Chomentowski P, Coen PM, Radikova Z, Goodpaster BH, Toledo FG. Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility. J Clin Endocrinol Metab. 2011 Feb;96(2):494-503. doi: 10.1210/jc.2010-0822. Epub 2010 Nov 24.

Reference Type BACKGROUND
PMID: 21106709 (View on PubMed)

Russell ST, Rajani S, Dhadda RS, Tisdale MJ. Mechanism of induction of muscle protein loss by hyperglycaemia. Exp Cell Res. 2009 Jan 1;315(1):16-25. doi: 10.1016/j.yexcr.2008.10.002. Epub 2008 Oct 17.

Reference Type BACKGROUND
PMID: 18973755 (View on PubMed)

Roubenoff R, Parise H, Payette HA, Abad LW, D'Agostino R, Jacques PF, Wilson PW, Dinarello CA, Harris TB. Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: the Framingham Heart Study. Am J Med. 2003 Oct 15;115(6):429-35. doi: 10.1016/j.amjmed.2003.05.001.

Reference Type BACKGROUND
PMID: 14563498 (View on PubMed)

Phillips T, Leeuwenburgh C. Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J. 2005 Apr;19(6):668-70. doi: 10.1096/fj.04-2870fje. Epub 2005 Jan 21.

Reference Type BACKGROUND
PMID: 15665035 (View on PubMed)

Gobl C, Tura A. Focus on Nutritional Aspects of Sarcopenia in Diabetes: Current Evidence and Remarks for Future Research. Nutrients. 2022 Jan 13;14(2):312. doi: 10.3390/nu14020312.

Reference Type BACKGROUND
PMID: 35057493 (View on PubMed)

Kumar P, Umakanth S, Girish N. A review of the components of exercise prescription for sarcopenic older adults. Eur Geriatr Med. 2022 Dec;13(6):1245-1280. doi: 10.1007/s41999-022-00693-7. Epub 2022 Sep 2.

Reference Type BACKGROUND
PMID: 36050581 (View on PubMed)

Hurst C, Robinson SM, Witham MD, Dodds RM, Granic A, Buckland C, De Biase S, Finnegan S, Rochester L, Skelton DA, Sayer AA. Resistance exercise as a treatment for sarcopenia: prescription and delivery. Age Ageing. 2022 Feb 2;51(2):afac003. doi: 10.1093/ageing/afac003.

Reference Type BACKGROUND
PMID: 35150587 (View on PubMed)

Ai Y, Xu R, Liu L. The prevalence and risk factors of sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021 Sep 3;13(1):93. doi: 10.1186/s13098-021-00707-7.

Reference Type RESULT
PMID: 34479652 (View on PubMed)

Sanz-Canovas J, Lopez-Sampalo A, Cobos-Palacios L, Ricci M, Hernandez-Negrin H, Mancebo-Sevilla JJ, Alvarez-Recio E, Lopez-Carmona MD, Perez-Belmonte LM, Gomez-Huelgas R, Bernal-Lopez MR. Management of Type 2 Diabetes Mellitus in Elderly Patients with Frailty and/or Sarcopenia. Int J Environ Res Public Health. 2022 Jul 16;19(14):8677. doi: 10.3390/ijerph19148677.

Reference Type RESULT
PMID: 35886528 (View on PubMed)

Che S, Meng M, Jiang Y, Ye X, Xie C. Perceptions of exercise and exercise instruction in patients with type 2 diabetes mellitus and sarcopenia : a qualitative study. BMC Geriatr. 2022 Nov 22;22(1):892. doi: 10.1186/s12877-022-03519-0.

Reference Type RESULT
PMID: 36419014 (View on PubMed)

Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014 May;69(5):547-58. doi: 10.1093/gerona/glu010.

Reference Type RESULT
PMID: 24737557 (View on PubMed)

Izzo A, Massimino E, Riccardi G, Della Pepa G. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients. 2021 Jan 9;13(1):183. doi: 10.3390/nu13010183.

Reference Type RESULT
PMID: 33435310 (View on PubMed)

Dai S, Shu D, Meng F, Chen Y, Wang J, Liu X, Xiao X, Guo W, Chen F. Higher Risk of Sarcopenia in Older Adults with Type 2 Diabetes: NHANES 1999-2018. Obes Facts. 2023;16(3):237-248. doi: 10.1159/000530241. Epub 2023 Apr 3.

Reference Type RESULT
PMID: 37011596 (View on PubMed)

Sugimoto K, Tabara Y, Ikegami H, Takata Y, Kamide K, Ikezoe T, Kiyoshige E, Makutani Y, Onuma H, Gondo Y, Ikebe K, Ichihashi N, Tsuboyama T, Matsuda F, Kohara K, Kabayama M, Fukuda M, Katsuya T, Osawa H, Hiromine Y, Rakugi H. Hyperglycemia in non-obese patients with type 2 diabetes is associated with low muscle mass: The Multicenter Study for Clarifying Evidence for Sarcopenia in Patients with Diabetes Mellitus. J Diabetes Investig. 2019 Nov;10(6):1471-1479. doi: 10.1111/jdi.13070. Epub 2019 Jun 1.

Reference Type RESULT
PMID: 31074209 (View on PubMed)

Chung SM, Moon JS, Chang MC. Prevalence of Sarcopenia and Its Association With Diabetes: A Meta-Analysis of Community-Dwelling Asian Population. Front Med (Lausanne). 2021 May 20;8:681232. doi: 10.3389/fmed.2021.681232. eCollection 2021.

Reference Type RESULT
PMID: 34095184 (View on PubMed)

Hong S, Chang Y, Jung HS, Yun KE, Shin H, Ryu S. Relative muscle mass and the risk of incident type 2 diabetes: A cohort study. PLoS One. 2017 Nov 30;12(11):e0188650. doi: 10.1371/journal.pone.0188650. eCollection 2017.

Reference Type RESULT
PMID: 29190709 (View on PubMed)

Wu H, Liu M, Chi VTQ, Wang J, Zhang Q, Liu L, Meng G, Yao Z, Bao X, Gu Y, Zhang S, Sun S, Zhou M, Jia Q, Song K, Huang J, Huo J, Zhang B, Ding G, Niu K. Handgrip strength is inversely associated with metabolic syndrome and its separate components in middle aged and older adults: a large-scale population-based study. Metabolism. 2019 Apr;93:61-67. doi: 10.1016/j.metabol.2019.01.011. Epub 2019 Jan 25.

Reference Type RESULT
PMID: 30690038 (View on PubMed)

Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE, Cawthon PM, Hoffman AR, Everson-Rose SA, Barrett-Connor E, Orwoll ES; Osteoporotic Fractures in Men Study Research Group. Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J Am Geriatr Soc. 2011 Jul;59(7):1217-24. doi: 10.1111/j.1532-5415.2011.03472.x. Epub 2011 Jun 30.

Reference Type RESULT
PMID: 21718263 (View on PubMed)

Yang Q, Zhang Y, Zeng Q, Yang C, Shi J, Zhang C, Ni X, Du Z, Tang Z, Hu J, Li X, Cai J, Li Q, Cheng Q. Correlation Between Diabetic Peripheral Neuropathy and Sarcopenia in Patients with Type 2 Diabetes Mellitus and Diabetic Foot Disease: A Cross-Sectional Study. Diabetes Metab Syndr Obes. 2020 Feb 13;13:377-386. doi: 10.2147/DMSO.S237362. eCollection 2020.

Reference Type RESULT
PMID: 32104034 (View on PubMed)

Solerte SB, Gazzaruso C, Bonacasa R, Rondanelli M, Zamboni M, Basso C, Locatelli E, Schifino N, Giustina A, Fioravanti M. Nutritional supplements with oral amino acid mixtures increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia. Am J Cardiol. 2008 Jun 2;101(11A):69E-77E. doi: 10.1016/j.amjcard.2008.03.004.

Reference Type RESULT
PMID: 18514630 (View on PubMed)

Naseeb MA, Volpe SL. Protein and exercise in the prevention of sarcopenia and aging. Nutr Res. 2017 Apr;40:1-20. doi: 10.1016/j.nutres.2017.01.001. Epub 2017 Jan 16.

Reference Type RESULT
PMID: 28473056 (View on PubMed)

Martinez-Arnau FM, Fonfria-Vivas R, Cauli O. Beneficial Effects of Leucine Supplementation on Criteria for Sarcopenia: A Systematic Review. Nutrients. 2019 Oct 17;11(10):2504. doi: 10.3390/nu11102504.

Reference Type RESULT
PMID: 31627427 (View on PubMed)

Uchitomi R, Oyabu M, Kamei Y. Vitamin D and Sarcopenia: Potential of Vitamin D Supplementation in Sarcopenia Prevention and Treatment. Nutrients. 2020 Oct 19;12(10):3189. doi: 10.3390/nu12103189.

Reference Type RESULT
PMID: 33086536 (View on PubMed)

Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J, Petermans J, Reginster JY, Bruyere O. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014 Nov;99(11):4336-45. doi: 10.1210/jc.2014-1742. Epub 2014 Jul 17.

Reference Type RESULT
PMID: 25033068 (View on PubMed)

Antoniak AE, Greig CA. The effect of combined resistance exercise training and vitamin D3 supplementation on musculoskeletal health and function in older adults: a systematic review and meta-analysis. BMJ Open. 2017 Jul 20;7(7):e014619. doi: 10.1136/bmjopen-2016-014619.

Reference Type RESULT
PMID: 28729308 (View on PubMed)

Gkekas NK, Anagnostis P, Paraschou V, Stamiris D, Dellis S, Kenanidis E, Potoupnis M, Tsiridis E, Goulis DG. The effect of vitamin D plus protein supplementation on sarcopenia: A systematic review and meta-analysis of randomized controlled trials. Maturitas. 2021 Mar;145:56-63. doi: 10.1016/j.maturitas.2021.01.002. Epub 2021 Jan 12.

Reference Type RESULT
PMID: 33541563 (View on PubMed)

Ganapathy A, Nieves JW. Nutrition and Sarcopenia-What Do We Know? Nutrients. 2020 Jun 11;12(6):1755. doi: 10.3390/nu12061755.

Reference Type RESULT
PMID: 32545408 (View on PubMed)

Krzyminska-Siemaszko R, Czepulis N, Lewandowicz M, Zasadzka E, Suwalska A, Witowski J, Wieczorowska-Tobis K. The Effect of a 12-Week Omega-3 Supplementation on Body Composition, Muscle Strength and Physical Performance in Elderly Individuals with Decreased Muscle Mass. Int J Environ Res Public Health. 2015 Aug 28;12(9):10558-74. doi: 10.3390/ijerph120910558.

Reference Type RESULT
PMID: 26343698 (View on PubMed)

Holten MK, Zacho M, Gaster M, Juel C, Wojtaszewski JF, Dela F. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes. 2004 Feb;53(2):294-305. doi: 10.2337/diabetes.53.2.294.

Reference Type RESULT
PMID: 14747278 (View on PubMed)

Hovanec N, Sawant A, Overend TJ, Petrella RJ, Vandervoort AA. Resistance training and older adults with type 2 diabetes mellitus: strength of the evidence. J Aging Res. 2012;2012:284635. doi: 10.1155/2012/284635. Epub 2012 Sep 4.

Reference Type RESULT
PMID: 22988507 (View on PubMed)

Lee J, Kim D, Kim C. Resistance Training for Glycemic Control, Muscular Strength, and Lean Body Mass in Old Type 2 Diabetic Patients: A Meta-Analysis. Diabetes Ther. 2017 Jun;8(3):459-473. doi: 10.1007/s13300-017-0258-3. Epub 2017 Apr 5.

Reference Type RESULT
PMID: 28382531 (View on PubMed)

Zhang Y, Zou L, Chen ST, Bae JH, Kim DY, Liu X, Song W. Effects and Moderators of Exercise on Sarcopenic Components in Sarcopenic Elderly: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2021 May 19;8:649748. doi: 10.3389/fmed.2021.649748. eCollection 2021.

Reference Type RESULT
PMID: 34095166 (View on PubMed)

Yee XS, Ng YS, Allen JC, Latib A, Tay EL, Abu Bakar HM, Ho CYJ, Koh WCC, Kwek HHT, Tay L. Performance on sit-to-stand tests in relation to measures of functional fitness and sarcopenia diagnosis in community-dwelling older adults. Eur Rev Aging Phys Act. 2021 Jan 8;18(1):1. doi: 10.1186/s11556-020-00255-5.

Reference Type RESULT
PMID: 33419399 (View on PubMed)

Katula JA, Rejeski WJ, Marsh AP. Enhancing quality of life in older adults: a comparison of muscular strength and power training. Health Qual Life Outcomes. 2008 Jun 13;6:45. doi: 10.1186/1477-7525-6-45.

Reference Type RESULT
PMID: 18554394 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Informed Consent Form

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

NatGerHos-Sarcopenia

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.