Responders to Rhythmic Auditory Stimulation in Individuals Post-Stroke and Older Adults
NCT ID: NCT06085248
Last Updated: 2023-10-16
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
PHASE1
44 participants
INTERVENTIONAL
2023-09-18
2024-03-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effects of RAS in Stroke
NCT06830785
Effect of Rhythmic Auditory Stimulation(RAS) on Turning in Post-stroke Patients
NCT06818188
Clinical Study of Rhythmic Auditory Stimulation for Gait Disorders
NCT06837038
Training the Arm and Hand After Stroke Using Auditory Rhythm Cues
NCT00523523
The Effect of Active Breathing Exercises in Stroke Patients With Respiratory Rhythm Disorder
NCT06265818
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Stroke is a disease of aging, and older adults (OA) tend to walk more slowly and with a more variable walking pattern that is energetically more demanding. Similar to stroke survivors, the reduced function and quality of walking in older adults can lead to declines in walking ability, initiating a cycle of disability and deconditioning that increases the risk of injurious falls. Hence, maintaining walking function is crucial for preserving a high quality of life.
Rhythmic Auditory Stimulation (RAS) is a rehabilitation intervention that has shown promise for improving walking in both stroke survivors and older adults. Walking with RAS intervention has been proven to enhance walking function, particularly in terms of walking speed. RAS relies on the innate human capacity to synchronize movements with an external rhythm, such as walking to a regular auditory beat, a process referred to as auditory-motor entrainment. Rhythmic entrainment may stabilize gait patterns and reduce the metabolic cost of walking, as the body naturally selects a walking frequency that maximizes stability and minimizes energy expenditure. Moreover, rhythmic entrainment is thought to reduce the cognitive demand of walking, allowing individuals to allocate their attention to secondary tasks essential for safe community navigation. Despite the evidence supporting its effectiveness in improving walking speed and gait function, the biomechanical changes enabling these improvements are not well understood.
Furthermore, while RAS is an effective intervention, not everyone benefits from it equally. Individuals with stroke present with a wide variety of gait patterns, and the degree of gait impairment may influence the effectiveness of RAS intervention above and beyond any age-related changes. In this study, the investigators aim to identify predictors of the response to RAS intervention. More specifically, they seek to understand the association between baseline walking characteristics and the effect that RAS intervention has on walking ability.
For this analysis, the investigators define responders in three ways: (1) individuals who experience an increase in walking function, (2) individuals who see an improvement in gait quality, or (3) individuals who achieve enhancements in both gait quality and walking function while walking with personalized RAS.
The investigators hypothesize that post-stroke individuals with particular movement characteristics will exhibit increased walking distances and greater automaticity (i.e., reduced stride time variability) in the RAS condition compared to the baseline condition. Given that RAS promotes walking automaticity, the investigators anticipate that individuals with higher walking variability will derive the greatest benefit. Furthermore, investigators hypothesize that older adults with similar movement characteristics will also demonstrate increased walking distances and improved automaticity in the RAS condition compared to the baseline condition; however, it is expected that the effect size will be smaller in comparison to stroke survivors.
The investigators hypothesize that individuals who experience immediate improvements in walking function and/or gait quality while walking with personalized RAS are more likely to respond positively to long-term RAS intervention. However, the mechanism of action enabling this long-term response is expected to differ based on baseline deficits. The short-term, immediate responses to RAS measured in this study may provide insights into potential long-term mechanisms.
Study Protocol:
To assess the varied effects of RAS intervention, each participant will undergo a data collection session involving a series of population-specific clinical tests to characterize a sample of study participants. These tests include the Timed Up and Go (Stroke-specific), Functional Gait Assessment (Stroke-specific), Mini Balance Evaluation System (Older Adults-specific), Short Physical Performance Battery (Older Adults-specific), Mini-Mental State Examination (Older Adults-specific). In addition, all study participants will complete the 10-meter walk test (10MWT) at both a comfortable and fast walking speed and the 6-minute walk test (6MWT). Additionally, the 6MWT will be fully instrumented using motion capture cameras to track retro-reflective markers, wireless inertial measurement units, and force plates embedded in the walkway. These systems will enable simultaneous collection of gait kinematic, inertial, and kinetic signals, respectively. Metabolic measures will also be recorded during the 6MWT using indirect calorimetry.
Following the baseline 6MWT, participants will wear a custom, metronome-based RAS device. This device will employ a metronome application and bone-conducting headphones to provide auditory cues tailored to each participant based on a brief tuning procedure. Subsequently, the 6MWT will be repeated with RAS set to the patient-tailored metronome frequency.
The primary objective of this study is to assess the impact of personalized RAS on walking function (measured as the total distance covered in the 6MWT) and gait quality (evaluated by stride time variability) within each population group (stroke survivors and older adults). The investigators will also analyze RAS-induced changes in secondary gait quality metrics, including (1) the metabolic cost of transport, (2) ground reaction forces during walking, (3) joint kinetics, and (4) spatial-temporal gait parameter changes induced by varying distances. A secondary objective is to determine whether RAS-induced changes in walking function and/or gait quality are linked to specific baseline walking and gait impairment patterns (i.e., movement phenotypes) and whether these movement patterns are influenced by age.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
CROSSOVER
DIAGNOSTIC
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Walking without personalized rhythmic auditory stimulation
Subjects will complete a 6MWT without any auditory cues
Active walking
walking without RAS cue
Walking with personalized rhythmic auditory stimulation
Subjects will complete a 6MWT with personalized rhythmic auditory cues
Subject-specific optimized RAS
Walking with metronome-based RAS cueing
Active walking
walking without RAS cue
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Subject-specific optimized RAS
Walking with metronome-based RAS cueing
Active walking
walking without RAS cue
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* The ability to walk without another individual supporting the person's body weight for at least 6 minutes. Assistive devices, such as a cane, are allowed.
* at least 6 months post-stroke
* 65 to 80 years of age
Exclusion Criteria
* Pain that impairs walking ability (as assessed by a licensed physical therapist)
* Unexplained dizziness in the last 6 months (self-report)
* Severe comorbidities that affect walking or may interfere with the ability to participate in the study (musculoskeletal, cardiovascular, pulmonary, and neurological)
* More than 2 falls in the previous month
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Boston University Charles River Campus
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Lou Awad, PT, DPT, PhD
Associate Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Louis Awad, PT, DPT, PhD
Role: PRINCIPAL_INVESTIGATOR
Boston University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Boston University Neuromotor Recovery Laboratory
Boston, Massachusetts, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022 Feb 22;145(8):e153-e639. doi: 10.1161/CIR.0000000000001052. Epub 2022 Jan 26.
Awad L, Reisman D, Binder-Macleod S. Distance-Induced Changes in Walking Speed After Stroke: Relationship to Community Walking Activity. J Neurol Phys Ther. 2019 Oct;43(4):220-223. doi: 10.1097/NPT.0000000000000293.
Flansbjer UB, Holmback AM, Downham D, Patten C, Lexell J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med. 2005 Mar;37(2):75-82. doi: 10.1080/16501970410017215.
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021 Oct;20(10):795-820. doi: 10.1016/S1474-4422(21)00252-0. Epub 2021 Sep 3.
Reisman DS, Rudolph KS, Farquhar WB. Influence of speed on walking economy poststroke. Neurorehabil Neural Repair. 2009 Jul-Aug;23(6):529-34. doi: 10.1177/1545968308328732. Epub 2009 Jan 6.
Farris DJ, Hampton A, Lewek MD, Sawicki GS. Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke: from individual limbs to lower limb joints. J Neuroeng Rehabil. 2015 Feb 27;12:24. doi: 10.1186/s12984-015-0012-x.
Combs SA, Van Puymbroeck M, Altenburger PA, Miller KK, Dierks TA, Schmid AA. Is walking faster or walking farther more important to persons with chronic stroke? Disabil Rehabil. 2013 May;35(10):860-7. doi: 10.3109/09638288.2012.717575. Epub 2012 Oct 5.
Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke. 2006 Mar;37(3):872-6. doi: 10.1161/01.STR.0000204063.75779.8d. Epub 2006 Feb 2.
Roelker SA, Bowden MG, Kautz SA, Neptune RR. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review. Gait Posture. 2019 Feb;68:6-14. doi: 10.1016/j.gaitpost.2018.10.027. Epub 2018 Oct 25.
Kuo AD, Donelan JM. Dynamic principles of gait and their clinical implications. Phys Ther. 2010 Feb;90(2):157-74. doi: 10.2522/ptj.20090125. Epub 2009 Dec 18.
Sawicki GS, Lewis CL, Ferris DP. It pays to have a spring in your step. Exerc Sport Sci Rev. 2009 Jul;37(3):130-8. doi: 10.1097/JES.0b013e31819c2df6.
Riley PO, Paolini G, Della Croce U, Paylo KW, Kerrigan DC. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture. 2007 Jun;26(1):17-24. doi: 10.1016/j.gaitpost.2006.07.003. Epub 2006 Aug 14.
Bayat R, Barbeau H, Lamontagne A. Speed and temporal-distance adaptations during treadmill and overground walking following stroke. Neurorehabil Neural Repair. 2005 Jun;19(2):115-24. doi: 10.1177/1545968305275286.
Puh U, Baer GD. A comparison of treadmill walking and overground walking in independently ambulant stroke patients: a pilot study. Disabil Rehabil. 2009;31(3):202-10. doi: 10.1080/09638280801903039.
Arumukhom Revi, D., et.al. Propulsion Asymmetry Is Associated with an Inefficient Compensatory Ankle-to-Hip Redistribution of Positive Power after Stroke. Combined Sections Meeting 2023 (CSM), APTA
Arumukhom Revi D, De Rossi SMM, Walsh CJ, Awad LN. Estimation of Walking Speed and Its Spatiotemporal Determinants Using a Single Inertial Sensor Worn on the Thigh: From Healthy to Hemiparetic Walking. Sensors (Basel). 2021 Oct 21;21(21):6976. doi: 10.3390/s21216976.
Revi DA, Alvarez AM, Walsh CJ, De Rossi SMM, Awad LN. Indirect measurement of anterior-posterior ground reaction forces using a minimal set of wearable inertial sensors: from healthy to hemiparetic walking. J Neuroeng Rehabil. 2020 Jun 29;17(1):82. doi: 10.1186/s12984-020-00700-7.
Roerdink M, Bank PJ, Peper CL, Beek PJ. Walking to the beat of different drums: practical implications for the use of acoustic rhythms in gait rehabilitation. Gait Posture. 2011 Apr;33(4):690-4. doi: 10.1016/j.gaitpost.2011.03.001. Epub 2011 Mar 31.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
4440-SK
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.