Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
76 participants
INTERVENTIONAL
2020-01-10
2027-06-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Predictors of Response in Chronic Stroke
NCT04283253
A Brain Centered Neuroengineering Approach for Motor Recovery After Stroke: Combined rTMS and BCI Training
NCT02132520
Combined Repetitive Transcranial Magnetic Stimulation and Robot-Assisted Upper Arm Training in Subacute Stroke Patients
NCT03042455
Dual Site-dual Channel Non-invasive Brain Stimulation for Motor Function in Stroke Patients
NCT03486769
Mechanisms of Arm Recovery in Stroke Patients With Hand Paralysis
NCT03067818
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The central hypothesis is that bilateral premotor cortical areas, dorsal (PMd) more so than ventral (PMv,) develops greater connectivity with primary motor cortex (M1) after stroke and thus better ability to produce motor outputs that support reaching with the paretic arm. When there is more damage to the corticospinal tract, contralesional areas will take on a greater role.
The relationship between connectivity, behavioral effects of stimulation and motor performance will be established. These findings will allow the investigators to formulate clear hypotheses about which premotor area should be modulated with TMS, depending on stroke extent and deficits in motor control, when reaching the stage of proposing a treatment trial. Increased knowledge of the dynamic changes of physiological interactions during various phases of reaching movements will allow a more defined study regarding the role of premotor areas in recovery of motor function after stroke, and a novel treatment protocol that delivers precisely timed stimulations during practice of reaching movements. Ultimately, the investigators can test these novel treatments in clinical trials and compare their impact to other, less specific, neuromodulatory methods such as transcranial direct current stimulation. This study will also lay the groundwork for collaboration in brain computer interface and non-human primate investigations in the mechanisms and treatment of motor deficits after stroke.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Reaching with TMS
All participants enrolled in this group will receive TMS while performing reaching movements in a robotic system.
Transcranial Magnetic Stimulation
Paired pulse transcranial magnetic stimulation
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Transcranial Magnetic Stimulation
Paired pulse transcranial magnetic stimulation
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Have adequate language and neurocognitive function to participate in training and testing
* Be medically stable to participate in the study
* Be English speaking
* Be 45-90 years of age
* Clinically defined, unilateral, hemiparetic stroke with radiologic exclusion of other possible diagnosis
* Stroke onset at least 6 months before enrollment
* Subcortical stroke (ex: internal capsule, deep white matter of posterior frontal lobe)
* Present with mild to moderate arm dysfunction
* Be medically stable to participate in the study
* Be English speaking
Exclusion Criteria
* Unable to give informed consent
* Have a serious complicating medical illness that would preclude participation
* Contractures or orthopedic problems limiting range of joint motion in the potential study arm or other impairments that would interfere with the study activities
* Visual loss such that the subject would not be able to see the test patterns on the robot computer monitor
* Unable to comply with requirements of the study
* Enrollment in another greater-than-minimal risk study
* Presence of medical condition or implant that prevents safe administration of TMS or MRI
* Pregnancy
45 Years
90 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
VA Pittsburgh Healthcare System
FED
University of Pittsburgh
OTHER
VA Office of Research and Development
FED
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
George F. Wittenberg, MD PhD
Role: PRINCIPAL_INVESTIGATOR
VA Pittsburgh Healthcare System University Drive Division, Pittsburgh, PA
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
VA Pittsburgh Healthcare System University Drive Division, Pittsburgh, PA
Pittsburgh, Pennsylvania, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14518-23. doi: 10.1073/pnas.222536799. Epub 2002 Oct 10.
Butefisch CM, Kleiser R, Korber B, Muller K, Wittsack HJ, Homberg V, Seitz RJ. Recruitment of contralesional motor cortex in stroke patients with recovery of hand function. Neurology. 2005 Mar 22;64(6):1067-9. doi: 10.1212/01.WNL.0000154603.48446.36.
Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, Clarkson AN, Dancause N, Weiloch T, Johansen-Berg H, Nilsson M, McCullough LD, Joy MT. Enhancing the Alignment of the Preclinical and Clinical Stroke Recovery Research Pipeline: Consensus-Based Core Recommendations From the Stroke Recovery and Rehabilitation Roundtable Translational Working Group. Neurorehabil Neural Repair. 2017 Aug;31(8):699-707. doi: 10.1177/1545968317724285.
Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996 Jun 21;272(5269):1791-4. doi: 10.1126/science.272.5269.1791.
Frost SB, Barbay S, Friel KM, Plautz EJ, Nudo RJ. Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol. 2003 Jun;89(6):3205-14. doi: 10.1152/jn.01143.2002.
Dancause N, Barbay S, Frost SB, Zoubina EV, Plautz EJ, Mahnken JD, Nudo RJ. Effects of small ischemic lesions in the primary motor cortex on neurophysiological organization in ventral premotor cortex. J Neurophysiol. 2006 Dec;96(6):3506-11. doi: 10.1152/jn.00792.2006. Epub 2006 Sep 20.
Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, Stowe AM, Nudo RJ. Extensive cortical rewiring after brain injury. J Neurosci. 2005 Nov 2;25(44):10167-79. doi: 10.1523/JNEUROSCI.3256-05.2005.
Quessy S, Cote SL, Hamadjida A, Deffeyes J, Dancause N. Modulatory Effects of the Ipsi and Contralateral Ventral Premotor Cortex (PMv) on the Primary Motor Cortex (M1) Outputs to Intrinsic Hand and Forearm Muscles in Cebus apella. Cereb Cortex. 2016 Oct;26(10):3905-20. doi: 10.1093/cercor/bhw186. Epub 2016 Jul 29.
Kurata K. Premotor cortex of monkeys: set- and movement-related activity reflecting amplitude and direction of wrist movements. J Neurophysiol. 1993 Jan;69(1):187-200. doi: 10.1152/jn.1993.69.1.187.
Davare M, Duque J, Vandermeeren Y, Thonnard JL, Olivier E. Role of the ipsilateral primary motor cortex in controlling the timing of hand muscle recruitment. Cereb Cortex. 2007 Feb;17(2):353-62. doi: 10.1093/cercor/bhj152. Epub 2006 Mar 8.
Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol. 1993 Feb;33(2):181-9. doi: 10.1002/ana.410330208.
Wittenberg GF, Richards LG, Jones-Lush LM, Roys SR, Gullapalli RP, Yang S, Guarino PD, Lo AC. Predictors and brain connectivity changes associated with arm motor function improvement from intensive practice in chronic stroke. F1000Res. 2016 Aug 31;5:2119. doi: 10.12688/f1000research.8603.2. eCollection 2016.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Pro00003163
Identifier Type: OTHER
Identifier Source: secondary_id
N3511-R
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.