Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
3175 participants
INTERVENTIONAL
2023-08-26
2025-02-25
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Artificial Intelligence-assissted Glaucoma Evaluation
NCT03268031
Implementing AI-based Glaucoma Screening Within Federally Qualified Health Centers
NCT06629649
Glaucoma Screening Using An Artificial Intelligence Assisted Clinical Model in Singapore's Diabetic Eye Screening Program
NCT07243665
Prevalence of Corneal Astigmatism Before Glaucoma Surgery in Chinese Patients With Primary Angle-closure Glaucoma
NCT03159780
Artificial Intelligence-assisted Glaucoma Screening (AIAGS)
NCT03682783
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
ROTA (Retinal Nerve Fiber Layer Optical Texture Analysis) is a patented algorithm designed to detect axonal fiber bundle loss in glaucoma. Unlike conventional Optical Coherence Tomography (OCT) analysis, ROTA uses non-linear transformation to reveal the optical textures and trajectories of axonal fiber bundles, allowing for intuitive and reliable recognition of RNFL abnormalities without the need for normative databases. It can be applied across different OCT models and is particularly effective at detecting focal RNFL defects in early glaucoma and varying degrees of RNFL damage in end-stage glaucoma. The proposed study will address whether the application AI on ROTA is feasible and cost-effective in the setting of glaucoma screening, and whether ROTA would outperform optic disc photography and OCT RNFL thickness assessment.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
SCREENING
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Retinal nerve fiber layer optical texture analysis (ROTA)
The RNFL is imaged with OCT for ROTA.
ROTA assessment by AI
The RNFL is imaged with OCT for ROTA and the data are analyzed with a deep learning model.
Optic disc photography
The optic disc is imaged with color fundus camera.
Optic disc assessment by AI
The optic disc is imaged with color fundus camera and the data are analyzed with a deep learning model.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
ROTA assessment by AI
The RNFL is imaged with OCT for ROTA and the data are analyzed with a deep learning model.
Optic disc assessment by AI
The optic disc is imaged with color fundus camera and the data are analyzed with a deep learning model.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* Not able to cooperate for clinical examination or optical coherence tomography (OCT) investigation will be excluded
50 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Orbis
OTHER
The University of Hong Kong
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Professor Christopher K.S. Leung
Clinical Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Christopher Leung
Role: PRINCIPAL_INVESTIGATOR
The University of Hong Kong
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Southern District Wah Kwai Community Centre
Aberdeen, , Hong Kong
Kwun Tong District Health Centre
Kwun Tong, , Hong Kong
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR; Vision Loss Expert Group of the Global Burden of Disease Study. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017 Dec;5(12):e1221-e1234. doi: 10.1016/S2214-109X(17)30393-5. Epub 2017 Oct 11.
Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014 Nov;121(11):2081-90. doi: 10.1016/j.ophtha.2014.05.013. Epub 2014 Jun 26.
Weinreb RN, Leung CK, Crowston JG, Medeiros FA, Friedman DS, Wiggs JL, Martin KR. Primary open-angle glaucoma. Nat Rev Dis Primers. 2016 Sep 22;2:16067. doi: 10.1038/nrdp.2016.67.
Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, Gabriele ML, Kagemann L, Duker JS, Fujimoto JG, Schuman JS. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol. 2009 Aug;93(8):1057-63. doi: 10.1136/bjo.2009.157875. Epub 2009 May 7.
Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, Xu G, Fan N, Huang L, Pang CP, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009 Jul;116(7):1257-63, 1263.e1-2. doi: 10.1016/j.ophtha.2009.04.013. Epub 2009 May 22.
Pierro L, Gagliardi M, Iuliano L, Ambrosi A, Bandello F. Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments. Invest Ophthalmol Vis Sci. 2012 Aug 31;53(9):5912-20. doi: 10.1167/iovs.11-8644.
Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, He J, Lai GW, Li T, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology. 2010 Sep;117(9):1684-91. doi: 10.1016/j.ophtha.2010.01.026. Epub 2010 Jul 21.
Leung CK, Choi N, Weinreb RN, Liu S, Ye C, Liu L, Lai GW, Lau J, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: pattern of RNFL defects in glaucoma. Ophthalmology. 2010 Dec;117(12):2337-44. doi: 10.1016/j.ophtha.2010.04.002. Epub 2010 Aug 3.
Leung CK, Yu M, Weinreb RN, Lai G, Xu G, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology. 2012 Sep;119(9):1858-66. doi: 10.1016/j.ophtha.2012.03.044. Epub 2012 Jun 5.
Xu G, Weinreb RN, Leung CKS. Retinal nerve fiber layer progression in glaucoma: a comparison between retinal nerve fiber layer thickness and retardance. Ophthalmology. 2013 Dec;120(12):2493-2500. doi: 10.1016/j.ophtha.2013.07.027. Epub 2013 Sep 17.
Xu G, Weinreb RN, Leung CK. Optic nerve head deformation in glaucoma: the temporal relationship between optic nerve head surface depression and retinal nerve fiber layer thinning. Ophthalmology. 2014 Dec;121(12):2362-70. doi: 10.1016/j.ophtha.2014.06.035. Epub 2014 Aug 6.
Oddone F, Lucenteforte E, Michelessi M, Rizzo S, Donati S, Parravano M, Virgili G. Macular versus Retinal Nerve Fiber Layer Parameters for Diagnosing Manifest Glaucoma: A Systematic Review of Diagnostic Accuracy Studies. Ophthalmology. 2016 May;123(5):939-49. doi: 10.1016/j.ophtha.2015.12.041. Epub 2016 Feb 15.
Biswas S, Lin C, Leung CK. Evaluation of a Myopic Normative Database for Analysis of Retinal Nerve Fiber Layer Thickness. JAMA Ophthalmol. 2016 Sep 1;134(9):1032-9. doi: 10.1001/jamaophthalmol.2016.2343.
Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, Lee AK, Leung GY, Rao SK, Lam DS. Retinal nerve fiber layer measurements in myopia: An optical coherence tomography study. Invest Ophthalmol Vis Sci. 2006 Dec;47(12):5171-6. doi: 10.1167/iovs.06-0545.
Leung CKS, Lam AKN, Weinreb RN, Garway-Heath DF, Yu M, Guo PY, Chiu VSM, Wan KHN, Wong M, Wu KZ, Cheung CYL, Lin C, Chan CKM, Chan NCY, Kam KW, Lai GWK. Diagnostic assessment of glaucoma and non-glaucomatous optic neuropathies via optical texture analysis of the retinal nerve fibre layer. Nat Biomed Eng. 2022 May;6(5):593-604. doi: 10.1038/s41551-021-00813-x. Epub 2022 Jan 6.
Zheng F, Yu M, Leung CK. Diagnostic criteria for detection of retinal nerve fibre layer thickness and neuroretinal rim width abnormalities in glaucoma. Br J Ophthalmol. 2020 Feb;104(2):270-275. doi: 10.1136/bjophthalmol-2018-313581. Epub 2019 May 30.
Lin D, Xiong J, Liu C, Zhao L, Li Z, Yu S, Wu X, Ge Z, Hu X, Wang B, Fu M, Zhao X, Wang X, Zhu Y, Chen C, Li T, Li Y, Wei W, Zhao M, Li J, Xu F, Ding L, Tan G, Xiang Y, Hu Y, Zhang P, Han Y, Li JO, Wei L, Zhu P, Liu Y, Chen W, Ting DSW, Wong TY, Chen Y, Lin H. Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study. Lancet Digit Health. 2021 Aug;3(8):e486-e495. doi: 10.1016/S2589-7500(21)00086-8.
Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology. 2018 Aug;125(8):1199-1206. doi: 10.1016/j.ophtha.2018.01.023. Epub 2018 Mar 2.
Liu H, Li L, Wormstone IM, Qiao C, Zhang C, Liu P, Li S, Wang H, Mou D, Pang R, Yang D, Zangwill LM, Moghimi S, Hou H, Bowd C, Jiang L, Chen Y, Hu M, Xu Y, Kang H, Ji X, Chang R, Tham C, Cheung C, Ting DSW, Wong TY, Wang Z, Weinreb RN, Xu M, Wang N. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. JAMA Ophthalmol. 2019 Dec 1;137(12):1353-1360. doi: 10.1001/jamaophthalmol.2019.3501.
He M, Foster PJ, Ge J, Huang W, Zheng Y, Friedman DS, Lee PS, Khaw PT. Prevalence and clinical characteristics of glaucoma in adult Chinese: a population-based study in Liwan District, Guangzhou. Invest Ophthalmol Vis Sci. 2006 Jul;47(7):2782-8. doi: 10.1167/iovs.06-0051.
Hou HW, Lin C, Leung CK. Integrating Macular Ganglion Cell Inner Plexiform Layer and Parapapillary Retinal Nerve Fiber Layer Measurements to Detect Glaucoma Progression. Ophthalmology. 2018 Jun;125(6):822-831. doi: 10.1016/j.ophtha.2017.12.027. Epub 2018 Feb 9.
Yu M, Lin C, Weinreb RN, Lai G, Chiu V, Leung CK. Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study. Ophthalmology. 2016 Jun;123(6):1201-10. doi: 10.1016/j.ophtha.2016.02.017. Epub 2016 Mar 19.
Wu K, Lin C, Lam AK, Chan L, Leung CK. Wide-field Trend-based Progression Analysis of Combined Retinal Nerve Fiber Layer and Ganglion Cell Inner Plexiform Layer Thickness: A New Paradigm to Improve Glaucoma Progression Detection. Ophthalmology. 2020 Oct;127(10):1322-1330. doi: 10.1016/j.ophtha.2020.03.019. Epub 2020 Mar 29.
Related Links
Access external resources that provide additional context or updates about the study.
Glaucoma Screening, Consensus Series - 5. Hague, Netherlands: Kugler Publications, 2008.
Consensus series 10 - Diagnosis of primary open angle glaucoma (Kugler Publications, 2016).
Optical Texture Analysis of the Inner Retina (US 20190110681)
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
H012_Protocol_Glaucoma
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.