Technological Balance and Gait Rehabilitation in Patients With Multiple Sclerosis.
NCT ID: NCT05983809
Last Updated: 2025-07-14
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
24 participants
INTERVENTIONAL
2023-09-15
2026-05-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
MS is an extremely heterogeneous disease in terms of signs and symptoms, both in terms of the neurological systems involved and the degree of impairment and severity. The most common symptoms include, among others, difficulty walking and lack of balance. The lack of stability and coordination reduces independence and mobility, predisposing people with MS to accidental falls and compromising mobility in daily life. Another symptom that characterises MS is cognitive impairment, which mainly alters information processing speed and short- and long-term memory. MS-related cognitive impairment is detectable at every stage of the disease. Very often, people with MS have co-existing cognitive and motor deficits, which add to the complexity of managing MS. In order to address this condition, a treatment strategy that combines cognitive and motor rehabilitation needs to be identified. Despite the increasing availability of effective drug therapies that may impact on balance, rehabilitation is a very important means to counteract the progression of disability and improve physical function, affecting social participation and improving quality of life. In recent years, rehabilitation makes use of various robotic devices, which are based on repeatable, intense and motivating exercises, integrated with an enriched virtual environment, capable of improving the quality of movement. In light of the literature, which mainly focuses on robotic therapy for walking, this pilot study aims to evaluate the effects of a specific robotic treatment for balance in MS patients.
The primary objective of the study is the evaluation of the effects of technological rehabilitation by means of a robotic platform (Hunova® Movendo Technology srl, Genoa, IT) on static balance.
The secondary objective is the evaluation of the effects of technological rehabilitation by means of a robotic platform (Hunova® Movendo Technology srl, Genoa, IT)
1. on dynamic balance and walking (assessed with clinical and instrumental scales)
2. on fatigue and cognitive performance in terms of sustained attention, dual-task cost and cognitive-motor interference;
3. on quality of life.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
"Evaluation of Usability and Safety of the Self-balancing Walking System Atalante in Patients With Multiple Sclerosis"
NCT05563402
Stabilometric Assessment of Balance Recovery in Persons With Multiple Sclerosis
NCT02131285
Sensori-motor Integration Training in Multiple Sclerosis
NCT01040117
Motor-cognitive Performance in People With Multiple Sclerosis
NCT06312046
Preventing the Progression of Multiple Sclerosis: Early Rehabilitative Treatment and Multimodal Assessment - Part B
NCT06056960
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Experimental Group (HO, Hunova-Observation)
Patients in the HO group will undergo a specific rehabilitation treatment for balance disorders using the robotic platform Hunova® Movendo Technology srl, Genova, IT), for 4 weeks, 3 times a week for 45 minutes each. In particular, the technological rehabilitation carried out with the platform will have as main objective the improvement of balance, both in sitting and standing position, and static and dynamic exercises, dual-task exercises and exercises to improve trunk control will be proposed. Afterwards, patients will undergo 4 weeks of observation without rehabilitation treatment.
Technological rehabilitation
Specific rehabilitation for balance disorder using the robotic platform
Control Group (OH, Observation-Hunova)
Patients in the OH group will undergo 4 weeks of observation without rehabilitation treatment, followed by specific rehabilitation treatment for balance disorders using the robotic platform Hunova® Movendo Technology srl, Genova, IT), for 4 weeks, 3 times a week for 45 minutes each. In particular, the technological rehabilitation carried out with the platform will have as main objective the improvement of balance, both in sitting and standing position, and static and dynamic exercises, dual-task exercises and exercises to improve trunk control will be proposed.
Technological rehabilitation
Specific rehabilitation for balance disorder using the robotic platform
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Technological rehabilitation
Specific rehabilitation for balance disorder using the robotic platform
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age between 18 and 65 years;
* Pyramidal or cerebellar system with a score ≥ 2 on the EDSS;
* EDSS between 2 and 3;
* Ability to stand without support for 60 seconds;
* Stability of disease-modifying treatment and absence of clinical relapse of the disease for at least 1 year;
* Cognitive ability to execute simple orders and understand the physiotherapist's instructions \[assessed by Token Test (score ≥ 26.5)\];
* Ability to understand and sign informed consent.
Exclusion Criteria
* Presence of vestibular disorders unrelated to MS;
* Presence of psychiatric disorders or severe cognitive impairment, i.e. a Mini Mental State Examination (MMSE) score \< 24 (15);
* Presence of cardiovascular and respiratory disorders;
* Inability to provide informed consent.
18 Years
65 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Fondazione Policlinico Universitario Agostino Gemelli IRCCS
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
GIOVANNINI SILVIA
Principal investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Silvia Giovannini, MD, phD
Role: PRINCIPAL_INVESTIGATOR
Fondazione Policlinico Universitario A. Gemelli, IRCCS
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Fondazione Policlinico Universitario A. Gemelli IRCCS
Roma, RM, Italy
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Kamm CP, Uitdehaag BM, Polman CH. Multiple sclerosis: current knowledge and future outlook. Eur Neurol. 2014;72(3-4):132-41. doi: 10.1159/000360528. Epub 2014 Jul 30.
Martin CL, Phillips BA, Kilpatrick TJ, Butzkueven H, Tubridy N, McDonald E, Galea MP. Gait and balance impairment in early multiple sclerosis in the absence of clinical disability. Mult Scler. 2006 Oct;12(5):620-8. doi: 10.1177/1352458506070658.
Morris ME, Cantwell C, Vowels L, Dodd K. Changes in gait and fatigue from morning to afternoon in people with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2002 Mar;72(3):361-5. doi: 10.1136/jnnp.72.3.361.
Cattaneo D, Jonsdottir J. Sensory impairments in quiet standing in subjects with multiple sclerosis. Mult Scler. 2009 Jan;15(1):59-67. doi: 10.1177/1352458508096874. Epub 2008 Oct 9.
Sosnoff JJ, Shin S, Motl RW. Multiple sclerosis and postural control: the role of spasticity. Arch Phys Med Rehabil. 2010 Jan;91(1):93-9. doi: 10.1016/j.apmr.2009.09.013.
Prosperini L, Castelli L. Spotlight on postural control in patients with multiple sclerosis. Degener Neurol Neuromuscul Dis. 2018 Apr 3;8:25-34. doi: 10.2147/DNND.S135755. eCollection 2018.
van Asch, P. Impact of mobility impairment in multiple sclerosis 2-patients' perspectives. European Neurological Review. 2011; 6(2), 115-120. https://doi.org/10.17925/ENR.2011.06.02.115
Benedict RH, Cookfair D, Gavett R, Gunther M, Munschauer F, Garg N, Weinstock-Guttman B. Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). J Int Neuropsychol Soc. 2006 Jul;12(4):549-58. doi: 10.1017/s1355617706060723.
Amato MP, Hakiki B, Goretti B, Rossi F, Stromillo ML, Giorgio A, Roscio M, Ghezzi A, Guidi L, Bartolozzi ML, Portaccio E, De Stefano N; Italian RIS/MS Study Group. Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology. 2012 Jan 31;78(5):309-14. doi: 10.1212/WNL.0b013e31824528c9. Epub 2012 Jan 18.
Langdon DW. Cognition in multiple sclerosis. Curr Opin Neurol. 2011 Jun;24(3):244-9. doi: 10.1097/WCO.0b013e328346a43b.
Prosperini L, Tomassini V, Castelli L, Tacchino A, Brichetto G, Cattaneo D, Solaro CM. Exergames for balance dysfunction in neurological disability: a meta-analysis with meta-regression. J Neurol. 2021 Sep;268(9):3223-3237. doi: 10.1007/s00415-020-09918-w. Epub 2020 May 23.
Castelli L, Prosperini L, Pozzilli C. Balance worsening associated with nabiximols in multiple sclerosis. Mult Scler. 2019 Jan;25(1):113-117. doi: 10.1177/1352458518765649. Epub 2018 Mar 13.
Bowman T, Gervasoni E, Amico AP, Antenucci R, Benanti P, Boldrini P, Bonaiuti D, Burini A, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzon S, Mazzoleni S, Mestanza Mattos FG, Molteni F, Morone G, Petrarca M, Picelli A, Posteraro F, Senatore M, Turchetti G, Crea S, Cattaneo D, Carrozza MC; "CICERONE" Italian Consensus Group for Robotic Rehabilitation. What is the impact of robotic rehabilitation on balance and gait outcomes in people with multiple sclerosis? A systematic review of randomized control trials. Eur J Phys Rehabil Med. 2021 Apr;57(2):246-253. doi: 10.23736/S1973-9087.21.06692-2. Epub 2021 Feb 4.
Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintore M, Traboulsee AL, Trojano M, Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018 Feb;17(2):162-173. doi: 10.1016/S1474-4422(17)30470-2. Epub 2017 Dec 21.
Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189-98. doi: 10.1016/0022-3956(75)90026-6. No abstract available.
Julious, S.A. 'Sample size of 12 per group rule of thumb for a pilot study'. Pharmaceutical Statistics. 2005. Vol 4. Pages 287-291.
Mun EY, von Eye A, White HR. An SEM Approach for the Evaluation of Intervention Effects Using Pre-Post-Post Designs. Struct Equ Modeling. 2009 Apr 1;16(2):315-337. doi: 10.1080/10705510902751358.
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power Analysis and Determination of Sample Size for Covariance Structure Modeling. Psychological Methods, 1, 130-149. https://doi.org/10.1037/1082-989X.1.2.130
Hu LT, Bentler PM (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424-453. doi: 10.1037/1082-989X.3.4.424
Hu LT, Bentler PM (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Structural Equation Modeling, 6, 1-55. doi: 10.1080/10705519909540118
Burnham, K. P., and Anderson, D. R. (2004).Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261-304. doi: 10.1177/0049124104268644
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009 Apr;42(2):377-81. doi: 10.1016/j.jbi.2008.08.010. Epub 2008 Sep 30.
Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN; REDCap Consortium. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019 Jul;95:103208. doi: 10.1016/j.jbi.2019.103208. Epub 2019 May 9.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
0000051/23
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.