Evaluation of Low-shrinkage Giomer Versus Resin-Modified Glass Ionomer in Cervical Caries Lesions: A Clinical Trial
NCT ID: NCT05930548
Last Updated: 2025-06-19
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
56 participants
INTERVENTIONAL
2023-09-01
2025-01-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Resin composites are known for their high mechanical properties, excellent esthetic properties, and ease of clinical application. However, when compared with glass ionomers, resin composite has no cariostatic effect on tooth structure. In addition, microleakage caused by polymerization shrinkage of resin composite leads to plaque accumulation and secondary caries. On the other hand, resin-modified glass ionomer has many advantages, yet still it has lower weakness and esthetic properties compared to resin composite.
Based on current literature, there is limited evidence comparing clinical performance of low-shrinkage giomer resin composite to resin-modified glass ionomer in the treatment of cervical caries lesions.
This study is conducted to evaluate the clinical performance of low-shrinkage giomer resin composite versus resin-modified glass ionomer in treatment of cervical caries lesions, using both Modified USPHS and Revised FDI criteria. This study will be designed to test the null hypothesis that the low-shrinkage giomer resin composite will have the same clinical performance as resin-modified glass ionomer in cervical restorations, using both Modified USPHS and Revised FDI criteria.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Evaluation of Performance and Occlusal Wear of Low Shrinkage Giomer Compared to Nanohybrid Resin Composite
NCT05949502
Clinical Evaluation of Different Bioactive Restorative Materials for Cervical Carious in High Caries Risk Patients
NCT06736964
Performance of GIOMER Based Resin Composite
NCT06021028
Restoration of Non-carious Cervical Lesions With Different Resin Composites and Universal Adhesive
NCT06393699
Partial Caries Removal in Permanent Molars Restored Using Giomer
NCT06601972
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Management of cervical lesions presents serious problems with any restorative material. The two most common reasons for restoration failure are secondary caries at the tooth-restoration interface and loss of retention. Class V lesions often exhibit a low retentive cavity configuration (C-factor); which is responsible for marginal gaps around the restorations. Cervical margins -lying in either dentin or cementum- show unfavorable bonding performance, besides being usually subgingival where moisture control is difficult. The subgingival margin is not clinically desirable due to difficulty in cleaning and increased biofilm accumulation. Therefore, the selection of the restorative material can be challenging.
In this context, fluoride containing adhesive materials are considered ideal in restoring class V carious lesions. Resin modified glass ionomers (RMGI) are highly recommended in the restoration of cervical lesions. The most important advantages of glass ionomer are its chemical adhesion to the tooth structure, and its fluoride release. However, RMGI has lower weakness and esthetic properties compared to resin composite.
In our study, the comparator material will be light cured resin reinforced glass ionomer restorative. RMGI is recommended to restore carious cervical lesions; especially with its ability to inhibit secondary caries due to its fluoride releasing ability. The main advantage of RMGI is its capability to chemically bond to tooth structure, even in the presence of moist dentin. RMGI reaction can be achieved by both acid-base reaction (induced by glass ionomer component) and polymerization reaction (induced by resin component). Thus, RMGI has better mechanical properties, wear resistance, and improved esthetics compared with conventional glass ionomer. In addition, the coefficient of thermal expansion of glass ionomer which is similar to that of tooth structure, allows for proper marginal adaptation without marginal leakage.
Resin composites have been widely used in dental practice; because of their high mechanical properties, excellent esthetic properties, and ease of clinical application.
However, when compared with glass ionomers, resin composite has no cariostatic effect on tooth structure. In addition, polymerization shrinkage of resin composite is of major concern; where mechanical stresses are developed due to contraction leading to break the marginal seal between resin composite and tooth structure. Polymerization shrinkage can cause clinical issues as restoration or tooth fracture, bond degradation and solubility, and microleakage. The microleakage caused by polymerization shrinkage of resin composite leads to plaque accumulation and secondary caries. Thus, choosing a fluoride-releasing and low-shrinkage resin composite may play a critical role in success of cervical restorations.
The continued development of resin composites has led to the introduction of Giomer technology. By combining the characteristics of resin composite and glass ionomer, hybrid products called giomers have been obtained. Giomer resin composite offers protection against caries, along with improved functional and esthetic properties; through incorporating particles of pre-reacted glass fillers (PRG) into the matrix of resin composite. The PRG-ionomer phase has the capability to release six key ions which are fluoride, aluminum, borate, silicate, strontium, and sodium ions. These ions exhibit acid neutralizing ability and help prevent demineralization of enamel and dentin, leading to decrease the possible incidence of secondary caries. This PRG technology provides giomer with both fluoride release and recharge, similar to glass ionomer while still maintaining the original physical properties of resin composite.
Beautifilâ„¢ II LS (Low shrinkage) giomer resin composite (Shofu Inc, Kyoto, Japan) shows both sustained fluoride release and recharge, and low volumetric shrinkage of less than 1% with low resultant polymerization shrinkage stress. Such remarkable feature is due to the novel SRS (Steric Repulsion Structured) molecule which is designed to decrease polymerization shrinkage through molecular steric repulsion resulting in a stable restoration microstructure. Thus, low shrinkage giomers are best indicated in class V cavities where the dentin bonding agent does not have high strength.
A recent clinical trial compared the clinical performance of giomers versus resin modified glass ionomer in proximal lesions. Marginal adaptation was higher in giomers than resin-modified glass ionomers after 12 months. Also, a systematic review investigated in vivo longevity of giomers compared to other adhesive restorative materials (hybrid resin composite, composmer, and RMGIC), and concluded that RMGIC was the most successful material in terms of biological properties while giomers had the longest survival rate. An in-vitro study evaluated the surface roughness and fluoride release of Beautifil II and Fuji II LC (resin-modified glass ionomer). Resin-modified glass ionomer showed the highest fluoride release, while the giomer showed an intact, smooth surface with no irregularities as those found in glass ionomer. Thus, the smooth surface of giomers inhibit biofilm formation, decreasing the risk of dental caries and periodontal diseases. Regarding the mechanical properties of giomers, it has exhibited a higher flexural strength value when compared to glass ionomer cements. The hardness values were twice as high for the giomer when compared to self-curing and light-curing glass ionomer cements.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Resin modified glass ionomer
RMGI is recommended to restore carious cervical lesions; especially with its ability to inhibit secondary caries due to its fluoride releasing ability. The main advantage of RMGI is its capability to chemically bond to tooth structure, even in the presence of moist dentin. RMGI reaction can be achieved by both acid-base reaction (induced by glass ionomer component) and polymerization reaction (induced by resin component). Thus, RMGI has better mechanical properties, wear resistance, and improved esthetics compared with conventional glass ionomer (AlQranei MS et al, 2021). In addition, the coefficient of thermal expansion of glass ionomer which is similar to that of tooth structure, allows for proper marginal adaptation without marginal leakage (Bollu IP et al, 2016).
Low Shrinkage Giomer
Low shrinkage giomer resin composite shows both sustained fluoride release and recharge, and low volumetric shrinkage of less than 1% with low resultant polymerization shrinkage stress. Such remarkable feature is due to the novel SRS (Steric Repulsion Structured) molecule which is designed to decrease polymerization shrinkage through molecular steric repulsion resulting in a stable restoration microstructure (AlQranei MS et al, 2021). Thus, low shrinkage giomers are best indicated in class V cavities where the dentin bonding agent does not have high strength (Algailani U, et al 2022).
Low shrinkage giomer
Low shrinkage giomer resin composite shows both sustained fluoride release and recharge, and low volumetric shrinkage of less than 1% with low resultant polymerization shrinkage stress. Such remarkable feature is due to the novel SRS (Steric Repulsion Structured) molecule which is designed to decrease polymerization shrinkage through molecular steric repulsion resulting in a stable restoration microstructure (AlQranei MS et al, 2021). Thus, low shrinkage giomers are best indicated in class V cavities where the dentin bonding agent does not have high strength (Algailani U, et al 2022).
Low Shrinkage Giomer
Low shrinkage giomer resin composite shows both sustained fluoride release and recharge, and low volumetric shrinkage of less than 1% with low resultant polymerization shrinkage stress. Such remarkable feature is due to the novel SRS (Steric Repulsion Structured) molecule which is designed to decrease polymerization shrinkage through molecular steric repulsion resulting in a stable restoration microstructure (AlQranei MS et al, 2021). Thus, low shrinkage giomers are best indicated in class V cavities where the dentin bonding agent does not have high strength (Algailani U, et al 2022).
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Low Shrinkage Giomer
Low shrinkage giomer resin composite shows both sustained fluoride release and recharge, and low volumetric shrinkage of less than 1% with low resultant polymerization shrinkage stress. Such remarkable feature is due to the novel SRS (Steric Repulsion Structured) molecule which is designed to decrease polymerization shrinkage through molecular steric repulsion resulting in a stable restoration microstructure (AlQranei MS et al, 2021). Thus, low shrinkage giomers are best indicated in class V cavities where the dentin bonding agent does not have high strength (Algailani U, et al 2022).
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age: 25-50 years.
* Males or females
* Asymptomatic vital teeth. No pulp pathology or periapical pathosis
* Healthy periodontium and favorable occlusion.
* Good general health
* Co-operative patients approving to participate in the trial.
Exclusion Criteria
* Parafunctional habits or TMJ disorders
* Active periodontitis
* Teeth supporting removable prostheses, or orthodontic appliances.
* Candidates with parafunction or bruxism.
* Candidates with systemic diseases or disabilities that may affect participation.
* Xerostomia.
* Heavy smoking.
* Pregnancy.
* Lack of compliance.
25 Years
50 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Cairo University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Menna Omar El Ghamrawy
Assistant Lecturer
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Faculty of Dentistry Cairo University
Giza, , Egypt
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
El Ghamrawy M, Kamal D, Hamza H. Clinical performance and cost-effectiveness of low-shrinkage giomer resin composite versus resin-modified glass ionomer in cervical carious lesions: a 12-month randomized controlled trial. BMC Oral Health. 2025 Aug 6;25(1):1295. doi: 10.1186/s12903-025-06594-y.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol, Statistical Analysis Plan, and Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
LSG_RMGI
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.