Comparing the Efficacy of tDCS and tRNS to Improve Reading Skills in Children and Adolescents With Dyslexia

NCT ID: NCT05832060

Last Updated: 2023-09-15

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Clinical Phase

NA

Total Enrollment

24 participants

Study Classification

INTERVENTIONAL

Study Start Date

2023-05-01

Study Completion Date

2025-03-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The present study grounds on the absence of evidence-based treatment in individuals with developmental dyslexia (DD). At this topic, the present study will explore the potential effect of transcranial random noise stimulation (tRNS) and transcranial direct current stimulation (tDCS) over bilateral temporo-parietal cortex (TPC), cerebral areas usually disrupted in individuals with DD.

The investigators hypothesized that active tRNS and tDCS over TPC will boost reading skills in children and adolescents with DD. On the contrary, sham (placebo) tRNS and tDCS over TPC will not have significant effect in improving reading skills. Further, both active and sham tRNS and tDCS will be safe and well tolerated.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The study design is within-subject, randomized stratified, double blind, placebo-controlled.

A group of children and adolescents with DD will be selected and exposed to three different conditions with an interval-session of at least 6 days: 1. tRNS over bilateral TPC; 2. anodal tDCS over left TPC (cathode over right TPC); 3. sham tRNS or tDCS. During stimulation (both real and sham), participants will undergo a concomitant reading task.

In this project, the investigators will work to understand whether a brain-based intervention, with the use of tRNS and tDCS, can improve the outcome of individuals with DD.

The protocol will allow the investigators to:

* comparing the efficacy of tDCS and tRNS over TPC in improving reading abilities,
* comparing the safety and tolerability of tDCS and tRNS in children and adolescents.

The investigator's overarching goal is to provide a scientific foundation for devising new rehabilitation strategies in DD, based on the two most used brain stimulation techniques in pediatric population.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Developmental Dyslexia

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

CROSSOVER

Primary Study Purpose

TREATMENT

Blinding Strategy

DOUBLE

Participants Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

tDCS, tRNS, Sham

1. Active left anodal/right cathodal tDCS over TPC
2. Active tRNS over bilateral TPC
3. Sham tRNS or tDCS over bilateral TPC

Group Type EXPERIMENTAL

Active tDCS

Intervention Type DEVICE

Active tDCS will be delivered over TPC for a stimulation session. The anodal electrode will be placed on the left TPC, T7/TP7 position according to the 10-20 International EEG 10-20 System for electrode placement. The cathodal electrode will be placed on the right TPC, T8/TP8 position. Intensity will be set at 1 mA, the duration of stimulation will be 20 min.

Active tRNS

Intervention Type DEVICE

Active tRNS will be delivered to bilateral TPC for a stimulation session. The electrodes will be placed on the left and right TPC, respectively T7/TP7 and T8/TP8 position, at 0.75 mA (100-500 Hz) for 20 min.

Sham tRNS or tDCS

Intervention Type DEVICE

Sham tRNS or tDCS will be delivered over bilateral TPC for a stimulation session. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down without the participants awareness.

tDCS, Sham, tRNS

1. Active left anodal/right cathodal tDCS over TPC
2. Sham tRNS or tDCS over bilateral TPC
3. Active tRNS over bilateral TPC

Group Type EXPERIMENTAL

Active tDCS

Intervention Type DEVICE

Active tDCS will be delivered over TPC for a stimulation session. The anodal electrode will be placed on the left TPC, T7/TP7 position according to the 10-20 International EEG 10-20 System for electrode placement. The cathodal electrode will be placed on the right TPC, T8/TP8 position. Intensity will be set at 1 mA, the duration of stimulation will be 20 min.

Active tRNS

Intervention Type DEVICE

Active tRNS will be delivered to bilateral TPC for a stimulation session. The electrodes will be placed on the left and right TPC, respectively T7/TP7 and T8/TP8 position, at 0.75 mA (100-500 Hz) for 20 min.

Sham tRNS or tDCS

Intervention Type DEVICE

Sham tRNS or tDCS will be delivered over bilateral TPC for a stimulation session. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down without the participants awareness.

tRNS, tDCS, Sham

1. Active tRNS over bilateral TPC
2. Active left anodal/right cathodal tDCS over TPC
3. Sham tRNS or tDCS over bilateral TPC

Group Type EXPERIMENTAL

Active tDCS

Intervention Type DEVICE

Active tDCS will be delivered over TPC for a stimulation session. The anodal electrode will be placed on the left TPC, T7/TP7 position according to the 10-20 International EEG 10-20 System for electrode placement. The cathodal electrode will be placed on the right TPC, T8/TP8 position. Intensity will be set at 1 mA, the duration of stimulation will be 20 min.

Active tRNS

Intervention Type DEVICE

Active tRNS will be delivered to bilateral TPC for a stimulation session. The electrodes will be placed on the left and right TPC, respectively T7/TP7 and T8/TP8 position, at 0.75 mA (100-500 Hz) for 20 min.

Sham tRNS or tDCS

Intervention Type DEVICE

Sham tRNS or tDCS will be delivered over bilateral TPC for a stimulation session. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down without the participants awareness.

tRNS, Sham, tDCS

1. Active tRNS over bilateral TPC
2. Sham tRNS or tDCS over bilateral TPC
3. Active left anodal/right cathodal tDCS over TPC

Group Type EXPERIMENTAL

Active tDCS

Intervention Type DEVICE

Active tDCS will be delivered over TPC for a stimulation session. The anodal electrode will be placed on the left TPC, T7/TP7 position according to the 10-20 International EEG 10-20 System for electrode placement. The cathodal electrode will be placed on the right TPC, T8/TP8 position. Intensity will be set at 1 mA, the duration of stimulation will be 20 min.

Active tRNS

Intervention Type DEVICE

Active tRNS will be delivered to bilateral TPC for a stimulation session. The electrodes will be placed on the left and right TPC, respectively T7/TP7 and T8/TP8 position, at 0.75 mA (100-500 Hz) for 20 min.

Sham tRNS or tDCS

Intervention Type DEVICE

Sham tRNS or tDCS will be delivered over bilateral TPC for a stimulation session. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down without the participants awareness.

Sham, tDCS, tRNS

1. Sham tRNS or tDCS over bilateral TPC
2. Active left anodal/right cathodal tDCS over TPC
3. Active tRNS over bilateral TPC

Group Type EXPERIMENTAL

Active tDCS

Intervention Type DEVICE

Active tDCS will be delivered over TPC for a stimulation session. The anodal electrode will be placed on the left TPC, T7/TP7 position according to the 10-20 International EEG 10-20 System for electrode placement. The cathodal electrode will be placed on the right TPC, T8/TP8 position. Intensity will be set at 1 mA, the duration of stimulation will be 20 min.

Active tRNS

Intervention Type DEVICE

Active tRNS will be delivered to bilateral TPC for a stimulation session. The electrodes will be placed on the left and right TPC, respectively T7/TP7 and T8/TP8 position, at 0.75 mA (100-500 Hz) for 20 min.

Sham tRNS or tDCS

Intervention Type DEVICE

Sham tRNS or tDCS will be delivered over bilateral TPC for a stimulation session. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down without the participants awareness.

Sham, tRNS, tDCS

1. Sham tRNS or tDCS over bilateral TPC
2. Active tRNS over bilateral TPC
3. Active left anodal/right cathodal tDCS over TPC

Group Type EXPERIMENTAL

Active tDCS

Intervention Type DEVICE

Active tDCS will be delivered over TPC for a stimulation session. The anodal electrode will be placed on the left TPC, T7/TP7 position according to the 10-20 International EEG 10-20 System for electrode placement. The cathodal electrode will be placed on the right TPC, T8/TP8 position. Intensity will be set at 1 mA, the duration of stimulation will be 20 min.

Active tRNS

Intervention Type DEVICE

Active tRNS will be delivered to bilateral TPC for a stimulation session. The electrodes will be placed on the left and right TPC, respectively T7/TP7 and T8/TP8 position, at 0.75 mA (100-500 Hz) for 20 min.

Sham tRNS or tDCS

Intervention Type DEVICE

Sham tRNS or tDCS will be delivered over bilateral TPC for a stimulation session. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down without the participants awareness.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Active tDCS

Active tDCS will be delivered over TPC for a stimulation session. The anodal electrode will be placed on the left TPC, T7/TP7 position according to the 10-20 International EEG 10-20 System for electrode placement. The cathodal electrode will be placed on the right TPC, T8/TP8 position. Intensity will be set at 1 mA, the duration of stimulation will be 20 min.

Intervention Type DEVICE

Active tRNS

Active tRNS will be delivered to bilateral TPC for a stimulation session. The electrodes will be placed on the left and right TPC, respectively T7/TP7 and T8/TP8 position, at 0.75 mA (100-500 Hz) for 20 min.

Intervention Type DEVICE

Sham tRNS or tDCS

Sham tRNS or tDCS will be delivered over bilateral TPC for a stimulation session. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down without the participants awareness.

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Children and adolescents with dyslexia (DSM-5, APA 2013)
* IQ ≥ 85

Exclusion Criteria

* Having a comorbidity with an important medical conditions;
* Having neurological diseases;
* Having Epilepsy o family history of epilepsy;
* Receiving a treatment for dyslexia in the previous three months before the baseline screening.
Minimum Eligible Age

8 Years

Maximum Eligible Age

13 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Bambino Gesù Hospital and Research Institute

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Deny Menghini

Head of Psychology Unit

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Bambino Gesù Hospital and Research Institute

Roma, , Italy

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Italy

References

Explore related publications, articles, or registry entries linked to this study.

Shaywitz BA, Shaywitz SE, Pugh KR, Mencl WE, Fulbright RK, Skudlarski P, Constable RT, Marchione KE, Fletcher JM, Lyon GR, Gore JC. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry. 2002 Jul 15;52(2):101-10. doi: 10.1016/s0006-3223(02)01365-3.

Reference Type RESULT
PMID: 12114001 (View on PubMed)

Temple E, Deutsch GK, Poldrack RA, Miller SL, Tallal P, Merzenich MM, Gabrieli JD. Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2860-5. doi: 10.1073/pnas.0030098100. Epub 2003 Feb 25.

Reference Type RESULT
PMID: 12604786 (View on PubMed)

Hoeft F, McCandliss BD, Black JM, Gantman A, Zakerani N, Hulme C, Lyytinen H, Whitfield-Gabrieli S, Glover GH, Reiss AL, Gabrieli JD. Neural systems predicting long-term outcome in dyslexia. Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):361-6. doi: 10.1073/pnas.1008950108. Epub 2010 Dec 20.

Reference Type RESULT
PMID: 21173250 (View on PubMed)

Hoeft F, Hernandez A, McMillon G, Taylor-Hill H, Martindale JL, Meyler A, Keller TA, Siok WT, Deutsch GK, Just MA, Whitfield-Gabrieli S, Gabrieli JD. Neural basis of dyslexia: a comparison between dyslexic and nondyslexic children equated for reading ability. J Neurosci. 2006 Oct 18;26(42):10700-8. doi: 10.1523/JNEUROSCI.4931-05.2006.

Reference Type RESULT
PMID: 17050709 (View on PubMed)

Shaywitz SE, Shaywitz BA, Pugh KR, Fulbright RK, Constable RT, Mencl WE, Shankweiler DP, Liberman AM, Skudlarski P, Fletcher JM, Katz L, Marchione KE, Lacadie C, Gatenby C, Gore JC. Functional disruption in the organization of the brain for reading in dyslexia. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2636-41. doi: 10.1073/pnas.95.5.2636.

Reference Type RESULT
PMID: 9482939 (View on PubMed)

Bakker DJ. Treatment of developmental dyslexia: a review. Pediatr Rehabil. 2006 Jan-Mar;9(1):3-13. doi: 10.1080/13638490500065392.

Reference Type RESULT
PMID: 16352500 (View on PubMed)

Simos PG, Fletcher JM, Bergman E, Breier JI, Foorman BR, Castillo EM, Davis RN, Fitzgerald M, Papanicolaou AC. Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology. 2002 Apr 23;58(8):1203-13. doi: 10.1212/wnl.58.8.1203.

Reference Type RESULT
PMID: 11971088 (View on PubMed)

Stuss DT. The future of cognitive neurorehabilitation. Neuropsychol Rehabil. 2011 Oct;21(5):755-68. doi: 10.1080/09602011.2011.605590. Epub 2011 Sep 27.

Reference Type RESULT
PMID: 21950776 (View on PubMed)

Looi CY, Lim J, Sella F, Lolliot S, Duta M, Avramenko AA, Cohen Kadosh R. Transcranial random noise stimulation and cognitive training to improve learning and cognition of the atypically developing brain: A pilot study. Sci Rep. 2017 Jul 5;7(1):4633. doi: 10.1038/s41598-017-04649-x.

Reference Type RESULT
PMID: 28680099 (View on PubMed)

Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003 May 15;15(4):619-26. doi: 10.1162/089892903321662994.

Reference Type RESULT
PMID: 12803972 (View on PubMed)

Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005 Sep;166(1):23-30. doi: 10.1007/s00221-005-2334-6. Epub 2005 Jul 6.

Reference Type RESULT
PMID: 15999258 (View on PubMed)

Cattaneo Z, Pisoni A, Papagno C. Transcranial direct current stimulation over Broca's region improves phonemic and semantic fluency in healthy individuals. Neuroscience. 2011 Jun 2;183:64-70. doi: 10.1016/j.neuroscience.2011.03.058. Epub 2011 Apr 6.

Reference Type RESULT
PMID: 21477637 (View on PubMed)

Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. Arch Neurol. 2008 Dec;65(12):1571-6. doi: 10.1001/archneur.65.12.1571.

Reference Type RESULT
PMID: 19064743 (View on PubMed)

Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010 Jun;41(6):1229-36. doi: 10.1161/STROKEAHA.109.576785. Epub 2010 Apr 15.

Reference Type RESULT
PMID: 20395612 (View on PubMed)

Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, Vergari M, Zago S, Priori A. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):451-3. doi: 10.1136/jnnp.2007.135277. Epub 2007 Dec 20.

Reference Type RESULT
PMID: 18096677 (View on PubMed)

Schneider HD, Hopp JP. The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clin Linguist Phon. 2011 Jun;25(6-7):640-54. doi: 10.3109/02699206.2011.570852. Epub 2011 Jun 1.

Reference Type RESULT
PMID: 21631313 (View on PubMed)

Vines BW, Norton AC, Schlaug G. Non-invasive brain stimulation enhances the effects of melodic intonation therapy. Front Psychol. 2011 Sep 26;2:230. doi: 10.3389/fpsyg.2011.00230. eCollection 2011.

Reference Type RESULT
PMID: 21980313 (View on PubMed)

Miniussi C, Rossini PM. Transcranial magnetic stimulation in cognitive rehabilitation. Neuropsychol Rehabil. 2011 Oct;21(5):579-601. doi: 10.1080/09602011.2011.562689. Epub 2011 Jun 24.

Reference Type RESULT
PMID: 21462081 (View on PubMed)

Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia S, Cogiamanian F, Barbieri S, Scarpini E, Priori A. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008 Aug 12;71(7):493-8. doi: 10.1212/01.wnl.0000317060.43722.a3. Epub 2008 Jun 4.

Reference Type RESULT
PMID: 18525028 (View on PubMed)

Rufener KS, Krauel K, Meyer M, Heinze HJ, Zaehle T. Transcranial electrical stimulation improves phoneme processing in developmental dyslexia. Brain Stimul. 2019 Jul-Aug;12(4):930-937. doi: 10.1016/j.brs.2019.02.007. Epub 2019 Feb 13.

Reference Type RESULT
PMID: 30826318 (View on PubMed)

Heth I, Lavidor M. Improved reading measures in adults with dyslexia following transcranial direct current stimulation treatment. Neuropsychologia. 2015 Apr;70:107-13. doi: 10.1016/j.neuropsychologia.2015.02.022. Epub 2015 Feb 19.

Reference Type RESULT
PMID: 25701796 (View on PubMed)

Costanzo F, Varuzza C, Rossi S, Sdoia S, Varvara P, Oliveri M, Giacomo K, Vicari S, Menghini D. Evidence for reading improvement following tDCS treatment in children and adolescents with Dyslexia. Restor Neurol Neurosci. 2016;34(2):215-26. doi: 10.3233/RNN-150561.

Reference Type RESULT
PMID: 26890096 (View on PubMed)

Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007 May 30;72(4-6):208-14. doi: 10.1016/j.brainresbull.2007.01.004. Epub 2007 Jan 24.

Reference Type RESULT
PMID: 17452283 (View on PubMed)

Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, Rothwell JC, Lemon RN, Frackowiak RS. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci. 2005 Jul;22(2):495-504. doi: 10.1111/j.1460-9568.2005.04233.x.

Reference Type RESULT
PMID: 16045502 (View on PubMed)

Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 2010 Dec 14;75(24):2176-84. doi: 10.1212/WNL.0b013e318202013a. Epub 2010 Nov 10.

Reference Type RESULT
PMID: 21068427 (View on PubMed)

Schlaug G, Marchina S, Norton A. From Singing to Speaking: Why Singing May Lead to Recovery of Expressive Language Function in Patients with Broca's Aphasia. Music Percept. 2008 Apr 1;25(4):315-323. doi: 10.1525/MP.2008.25.4.315.

Reference Type RESULT
PMID: 21197418 (View on PubMed)

Rubio-Morell B, Rotenberg A, Hernandez-Exposito S, Pascual-Leone A. [The use of noninvasive brain stimulation in childhood psychiatric disorders: new diagnostic and therapeutic opportunities and challenges]. Rev Neurol. 2011 Aug 16;53(4):209-25. Spanish.

Reference Type RESULT
PMID: 21780073 (View on PubMed)

Jancke L, Cheetham M, Baumgartner T. Virtual reality and the role of the prefrontal cortex in adults and children. Front Neurosci. 2009 May 1;3(1):52-9. doi: 10.3389/neuro.01.006.2009. eCollection 2009 May.

Reference Type RESULT
PMID: 19753097 (View on PubMed)

Mattai A, Miller R, Weisinger B, Greenstein D, Bakalar J, Tossell J, David C, Wassermann EM, Rapoport J, Gogtay N. Tolerability of transcranial direct current stimulation in childhood-onset schizophrenia. Brain Stimul. 2011 Oct;4(4):275-80. doi: 10.1016/j.brs.2011.01.001. Epub 2011 Feb 1.

Reference Type RESULT
PMID: 22032743 (View on PubMed)

Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011 Sep;14(8):1133-45. doi: 10.1017/S1461145710001690. Epub 2011 Feb 15.

Reference Type RESULT
PMID: 21320389 (View on PubMed)

Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008 Dec 24;28(52):14147-55. doi: 10.1523/JNEUROSCI.4248-08.2008.

Reference Type RESULT
PMID: 19109497 (View on PubMed)

Cappelletti M, Gessaroli E, Hithersay R, Mitolo M, Didino D, Kanai R, Cohen Kadosh R, Walsh V. Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. J Neurosci. 2013 Sep 11;33(37):14899-907. doi: 10.1523/JNEUROSCI.1692-13.2013.

Reference Type RESULT
PMID: 24027289 (View on PubMed)

Chaieb L, Antal A, Pisoni A, Saiote C, Opitz A, Ambrus GG, Focke N, Paulus W. Safety of 5 kHz tACS. Brain Stimul. 2014 Jan-Feb;7(1):92-6. doi: 10.1016/j.brs.2013.08.004. Epub 2013 Sep 13.

Reference Type RESULT
PMID: 24064065 (View on PubMed)

Costanzo F, Menghini D, Caltagirone C, Oliveri M, Vicari S. High frequency rTMS over the left parietal lobule increases non-word reading accuracy. Neuropsychologia. 2012 Sep;50(11):2645-51. doi: 10.1016/j.neuropsychologia.2012.07.017. Epub 2012 Jul 20.

Reference Type RESULT
PMID: 22820638 (View on PubMed)

Costanzo F, Rossi S, Varuzza C, Varvara P, Vicari S, Menghini D. Long-lasting improvement following tDCS treatment combined with a training for reading in children and adolescents with dyslexia. Neuropsychologia. 2019 Jul;130:38-43. doi: 10.1016/j.neuropsychologia.2018.03.016. Epub 2018 Mar 14.

Reference Type RESULT
PMID: 29550525 (View on PubMed)

Costanzo F, Varuzza C, Rossi S, Sdoia S, Varvara P, Oliveri M, Koch G, Vicari S, Menghini D. Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation. Neuroreport. 2016 Mar 23;27(5):295-300. doi: 10.1097/WNR.0000000000000536.

Reference Type RESULT
PMID: 26848997 (View on PubMed)

Fertonani A, Pirulli C, Miniussi C. Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci. 2011 Oct 26;31(43):15416-23. doi: 10.1523/JNEUROSCI.2002-11.2011.

Reference Type RESULT
PMID: 22031888 (View on PubMed)

Snowball A, Tachtsidis I, Popescu T, Thompson J, Delazer M, Zamarian L, Zhu T, Cohen Kadosh R. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr Biol. 2013 Jun 3;23(11):987-92. doi: 10.1016/j.cub.2013.04.045. Epub 2013 May 16.

Reference Type RESULT
PMID: 23684971 (View on PubMed)

Turkeltaub PE, Benson J, Hamilton RH, Datta A, Bikson M, Coslett HB. Left lateralizing transcranial direct current stimulation improves reading efficiency. Brain Stimul. 2012 Jul;5(3):201-207. doi: 10.1016/j.brs.2011.04.002. Epub 2011 May 5.

Reference Type RESULT
PMID: 22305346 (View on PubMed)

Linkersdorfer J, Lonnemann J, Lindberg S, Hasselhorn M, Fiebach CJ. Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: an ALE meta-analysis. PLoS One. 2012;7(8):e43122. doi: 10.1371/journal.pone.0043122. Epub 2012 Aug 20.

Reference Type RESULT
PMID: 22916214 (View on PubMed)

Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006 Apr;117(4):845-50. doi: 10.1016/j.clinph.2005.12.003. Epub 2006 Jan 19.

Reference Type RESULT
PMID: 16427357 (View on PubMed)

Ambrus GG, Paulus W, Antal A. Cutaneous perception thresholds of electrical stimulation methods: comparison of tDCS and tRNS. Clin Neurophysiol. 2010 Nov;121(11):1908-14. doi: 10.1016/j.clinph.2010.04.020. Epub 2010 May 14.

Reference Type RESULT
PMID: 20471313 (View on PubMed)

Berger I, Dakwar-Kawar O, Grossman ES, Nahum M, Cohen Kadosh R. Scaffolding the attention-deficit/hyperactivity disorder brain using transcranial direct current and random noise stimulation: A randomized controlled trial. Clin Neurophysiol. 2021 Mar;132(3):699-707. doi: 10.1016/j.clinph.2021.01.005. Epub 2021 Jan 27.

Reference Type RESULT
PMID: 33561725 (View on PubMed)

Breitling C, Zaehle T, Dannhauer M, Tegelbeckers J, Flechtner HH, Krauel K. Comparison between conventional and HD-tDCS of the right inferior frontal gyrus in children and adolescents with ADHD. Clin Neurophysiol. 2020 May;131(5):1146-1154. doi: 10.1016/j.clinph.2019.12.412. Epub 2020 Jan 24.

Reference Type RESULT
PMID: 32029377 (View on PubMed)

Paulesu E, Danelli L, Berlingeri M. Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Front Hum Neurosci. 2014 Nov 11;8:830. doi: 10.3389/fnhum.2014.00830. eCollection 2014.

Reference Type RESULT
PMID: 25426043 (View on PubMed)

Richlan F, Kronbichler M, Wimmer H. Structural abnormalities in the dyslexic brain: a meta-analysis of voxel-based morphometry studies. Hum Brain Mapp. 2013 Nov;34(11):3055-65. doi: 10.1002/hbm.22127. Epub 2012 Jun 19.

Reference Type RESULT
PMID: 22711189 (View on PubMed)

Vandermosten M, Boets B, Wouters J, Ghesquiere P. A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neurosci Biobehav Rev. 2012 Jul;36(6):1532-52. doi: 10.1016/j.neubiorev.2012.04.002. Epub 2012 Apr 17.

Reference Type RESULT
PMID: 22516793 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2639_OPBG_2021

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

TDCS-RTMS Intervention for Motor Function
NCT07257601 NOT_YET_RECRUITING NA