Effects of Intubation on Intra-ocular Pressure and Optic Nerve Sheath Diameter
NCT ID: NCT05763056
Last Updated: 2023-11-09
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
120 participants
INTERVENTIONAL
2023-09-01
2023-11-08
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
In this study, the investigators aimed to compare the effects of different types of endotracheal instruments (Machintosh laryngoscope, McGrath videoingoscope and C-Mac videoryngoscope) on intraocular pressure, optic nerve diameter and hemodynamic parameters.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effects of C-MAC Videolaryngoscope, McGRATH Videolaryngoscope and Macintosh Direct Laryngoscope on Intraocular Pressure and Hemodynamics
NCT03589638
Effects of Videolaryngoscope on Intraocular Pressure
NCT02474394
The Effects of Intubation Via McGrath Videolaryngoscope on Intraocular Pressure
NCT03003598
Comparison Of Videolaryngoscopes In Double Lumen Tube
NCT03826706
Effects of Direct Laryngoscopic and Fiberoptic Intubation on Intraocular Pressure
NCT03003585
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Laryngoscopy and endotracheal intubation cause increased intracranial pressure due to hypoxia, hypercapnia, straining, or coughing. It may be an indirect result of increased arterial and venous pressure, as well as a direct effect of intubation.
With the emergence of neuroimaging techniques and new diagnostic tools, various methods have been developed that can replace invasive methods, which are the gold standard in intraocular pressure measurement. However, invasive methods such as intraventricular and intraparenchymal catheter systems have some disadvantages and are associated with significant risks in terms of infection, bleeding, and time lost until follow-up.
The intraorbital subarachnoid space surrounding the optic nerve shows the same pressure variation as the intracranial subarachnoid space, and any increase in intracranial pressure is also seen in the orbital subarachnoid space. With the increase in intracranial pressure, the optic nerve, optic nerve sheath diameter, and subarachnoid space enlarge. There are many studies reporting that optic nerve sheath diameter can be evaluated using ultrasonography. Although there is no clear cut-off value for optic nerve sheath diameter, previous studies have found that an optic nerve sheath diameter of 5.0 mm and above may indicate an increase in intracranial pressure.
Previous studies have determined that the distribution of intraocular pressure in the adult population varies between 11 mmHg and 21 mmHg, and the mean intraocular pressure is 16.5 mmHg. It is well known that the sympathoadrenergic response caused by laryngoscopy and tracheal intubation significantly increases intraocular pressure (at least 10-20 mmHg). In addition, intravenous pressure and intraocular pressure increase due to cough, airway obstruction, succinylcholine use, hypoxia and hypercapnia during intubation.
In this study, the investigators aimed to compare the effects of different types of endotracheal instruments (Machintosh laryngoscope, McGrath videoingoscope and C-Mac videoringoscope) on intraocular pressure, optic nerve sheath diameter and hemodynamic parameters.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
McGrath videolaryngoscopy
It is a portable videoryngoscope weighing only 325 grams. The CameraStickTM component consists of a light source and a miniature camera, and the image is displayed on a 1.7 inch LCD (Liquid Crystal Display) screen mounted on top of the laryngoscope handle. At the same time, the LCD screen maintains visual contact with the patient and the laryngoscope, can be rotated up to 90°, allowing the user to work in a comfortable posture while performing tracheal intubation. The blade length is suitable for children over 5 years old and adults, thus reducing the trouble of storing different sized blades in the emergency intubation trolley. The blades are sterile and there is no risk of contamination as they are disposable.
McGrath videolaryngoscopy
The McGrath video laryngoscope has a thin, disposable, clear, regularly shaped blade similar to a Macintosh blade and a large LCD display attached to the arm. It is lighter in weight and the Mc VL has a small camera at the tip, with a more compact screen and handle that can make tracheal intubation easier and faster in normal or difficult airway. The smaller volume, thinner and portrait screen helps reduce blind spots
C-MAC videolaryngoscopy
The Macintosh blade is attached to the handle and the light beam is passed through the blade tip into a small metal guide tube indented 40 mm. The camera cable is connected to the control unit and the optical cable is connected to the light source. The video macintosh system is installed in a small trolley for easy portability of the device. The trolley supports an 8-inch monitor mounted on a rotating arm on the patient's left side. C-MAC VL devices can create continuous video recordings or static images on a secure removable digital card. The electronic module includes 2 buttons for photo and video shooting. In addition, the image of the C-MAC VL device can be viewed on other devices or recorded via a standard video output port. 3 C-MAC VL reusable metal macintosh blades (sizes 2 to 4) can be used for adult patients. These non-disposable knives have a closed design without gaps in terms of hygiene and have beveled edges to prevent tissue damage.
Direct laryngoscopy
During intubation with a direct laryngoscope (DL), the laryngoscope is inserted into the oral cavity from the right side of the mouth, the tongue is pushed to the left, and after advancing up to the vallecula, it hangs up and forward. In this way, the floor of the mouth and the epiglottis structure are removed from the field of view. If a straight blade laryngoscope is to be used, it is advanced so that the epiglottis remains under the blade after viewing the epiglottis (1). In DL, manipulations such as head extension, sniffing position, and compression of the cricoid cartilage may be required to facilitate visualization of the vocal folds. In 10-15% of the complications experienced during intubation with DL, there are problems related to the angle of view.
C-MAC videolaryngoscopy
Considering the importance of first attempt success in intubation, their use in emergency airway management has increased due to the high first attempt success rate in C-MAC VLs. In patients with cervical spine injury, semi-rigid collars used to prevent neck extension and neck movements cause poor laryngeal vision with Direct laryngoscope and difficulty intubation. C-MAC Video laryngoscope provides a better laryngeal view in these patients
McGrath videolaryngoscopy
The McGrath video laryngoscope has a thin, disposable, clear, regularly shaped blade similar to a Macintosh blade and a large LCD display attached to the arm. It is lighter in weight and the Mc VL has a small camera at the tip, with a more compact screen and handle that can make tracheal intubation easier and faster in normal or difficult airway. The smaller volume, thinner and portrait screen helps reduce blind spots
C-MAC videolaryngoscopy
The Macintosh blade is attached to the handle and the light beam is passed through the blade tip into a small metal guide tube indented 40 mm. The camera cable is connected to the control unit and the optical cable is connected to the light source. The video macintosh system is installed in a small trolley for easy portability of the device. The trolley supports an 8-inch monitor mounted on a rotating arm on the patient's left side. C-MAC VL devices can create continuous video recordings or static images on a secure removable digital card. The electronic module includes 2 buttons for photo and video shooting. In addition, the image of the C-MAC VL device can be viewed on other devices or recorded via a standard video output port. 3 C-MAC VL reusable metal macintosh blades (sizes 2 to 4) can be used for adult patients. These non-disposable knives have a closed design without gaps in terms of hygiene and have beveled edges to prevent tissue damage.
Direct laryngoscopy
During intubation with a direct laryngoscope (DL), the laryngoscope is inserted into the oral cavity from the right side of the mouth, the tongue is pushed to the left, and after advancing up to the vallecula, it hangs up and forward. In this way, the floor of the mouth and the epiglottis structure are removed from the field of view. If a straight blade laryngoscope is to be used, it is advanced so that the epiglottis remains under the blade after viewing the epiglottis (1). In DL, manipulations such as head extension, sniffing position, and compression of the cricoid cartilage may be required to facilitate visualization of the vocal folds. In 10-15% of the complications experienced during intubation with DL, there are problems related to the angle of view.
Direct laryngoscopy
Macintosh laryngoscopy is still one of the most commonly used advanced airway methods today. For an ideal glottis view in direct laryngoscopy, the mouth and larynx should be in alignment. For this, longitudinal flexion and head extension maneuvers are performed. Reasons such as the clinical situation during intubation and the anatomical variation in the patient may prevent this maneuver from being performed.
McGrath videolaryngoscopy
The McGrath video laryngoscope has a thin, disposable, clear, regularly shaped blade similar to a Macintosh blade and a large LCD display attached to the arm. It is lighter in weight and the Mc VL has a small camera at the tip, with a more compact screen and handle that can make tracheal intubation easier and faster in normal or difficult airway. The smaller volume, thinner and portrait screen helps reduce blind spots
C-MAC videolaryngoscopy
The Macintosh blade is attached to the handle and the light beam is passed through the blade tip into a small metal guide tube indented 40 mm. The camera cable is connected to the control unit and the optical cable is connected to the light source. The video macintosh system is installed in a small trolley for easy portability of the device. The trolley supports an 8-inch monitor mounted on a rotating arm on the patient's left side. C-MAC VL devices can create continuous video recordings or static images on a secure removable digital card. The electronic module includes 2 buttons for photo and video shooting. In addition, the image of the C-MAC VL device can be viewed on other devices or recorded via a standard video output port. 3 C-MAC VL reusable metal macintosh blades (sizes 2 to 4) can be used for adult patients. These non-disposable knives have a closed design without gaps in terms of hygiene and have beveled edges to prevent tissue damage.
Direct laryngoscopy
During intubation with a direct laryngoscope (DL), the laryngoscope is inserted into the oral cavity from the right side of the mouth, the tongue is pushed to the left, and after advancing up to the vallecula, it hangs up and forward. In this way, the floor of the mouth and the epiglottis structure are removed from the field of view. If a straight blade laryngoscope is to be used, it is advanced so that the epiglottis remains under the blade after viewing the epiglottis (1). In DL, manipulations such as head extension, sniffing position, and compression of the cricoid cartilage may be required to facilitate visualization of the vocal folds. In 10-15% of the complications experienced during intubation with DL, there are problems related to the angle of view.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
McGrath videolaryngoscopy
The McGrath video laryngoscope has a thin, disposable, clear, regularly shaped blade similar to a Macintosh blade and a large LCD display attached to the arm. It is lighter in weight and the Mc VL has a small camera at the tip, with a more compact screen and handle that can make tracheal intubation easier and faster in normal or difficult airway. The smaller volume, thinner and portrait screen helps reduce blind spots
C-MAC videolaryngoscopy
The Macintosh blade is attached to the handle and the light beam is passed through the blade tip into a small metal guide tube indented 40 mm. The camera cable is connected to the control unit and the optical cable is connected to the light source. The video macintosh system is installed in a small trolley for easy portability of the device. The trolley supports an 8-inch monitor mounted on a rotating arm on the patient's left side. C-MAC VL devices can create continuous video recordings or static images on a secure removable digital card. The electronic module includes 2 buttons for photo and video shooting. In addition, the image of the C-MAC VL device can be viewed on other devices or recorded via a standard video output port. 3 C-MAC VL reusable metal macintosh blades (sizes 2 to 4) can be used for adult patients. These non-disposable knives have a closed design without gaps in terms of hygiene and have beveled edges to prevent tissue damage.
Direct laryngoscopy
During intubation with a direct laryngoscope (DL), the laryngoscope is inserted into the oral cavity from the right side of the mouth, the tongue is pushed to the left, and after advancing up to the vallecula, it hangs up and forward. In this way, the floor of the mouth and the epiglottis structure are removed from the field of view. If a straight blade laryngoscope is to be used, it is advanced so that the epiglottis remains under the blade after viewing the epiglottis (1). In DL, manipulations such as head extension, sniffing position, and compression of the cricoid cartilage may be required to facilitate visualization of the vocal folds. In 10-15% of the complications experienced during intubation with DL, there are problems related to the angle of view.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Mallampati I or II classifications
* American Society of Anesthesiologists (ASA) I-II
Exclusion Criteria
* Diabetes mellitus,
* Cardiovascular diseases,
* Pulmonary diseases,
* ASA 3 and 4
* Body Mass Index (BMI) greater than 30
* Eye surgery
* Difficult intubation (Mallampati score of 3 or 4, thyromental distance of less than 6 cm and a maximum mouth opening of less than 3 cm)
* Intraocular pressure value more than 20 mmHg
* More than two intubation attempts
* A risk of regurgitation patients
* History of obstetric surgery
* Allergies to propofol, fentanyl or rocuronium
18 Years
65 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Inonu University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Erol Karaaslan
Associate Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Erol Karaaslan, assoc prof
Role: STUDY_DIRECTOR
Inonu University Medical Faculty , malatya.turkey
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Inonu University Medical Faculty
Malatya, , Turkey (Türkiye)
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011 Jul;37(7):1059-68. doi: 10.1007/s00134-011-2224-2. Epub 2011 Apr 20.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
ekaraaslan4
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.