Conduction System Pacing Versus Biventricular Pacing After Atrioventricular Node Ablation
NCT ID: NCT05467163
Last Updated: 2025-04-15
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
82 participants
INTERVENTIONAL
2023-07-18
2026-12-25
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Outcomes and Safety of Various Conduction System Pacing Methods
NCT04749836
Physiological Pacing for AV Block to Prevent Pacemaker-induced Cardiomyopathy
NCT05214365
Central Haemodynamics and Pacing for AV Block
NCT07276490
Mechanisms and Innovations in Cardiac Resynchronisation Therapy
NCT04221763
Left Bundle Branch Pacing Versus Conventional Pacing in Atrioventricular Block
NCT05129098
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The purpose of this study is to compare the effects of CSP and conventional BiV pacing on echocardiographic and clinical outcomes in HF patients with symptomatic AF and narrow QRS scheduled for AVNA. In this multicentric study, 82 patients will be randomized into one of two arms: a BiV pacing arm with BiV pacemaker implantation + AVNA or CSP arm with the implantation of a CSP device + AVNA. In patients randomized in CSP group, LBBP will be the preferred pacing technique. If LBBP will be unobtainable, HBP implantation will be attempted. In both arms additional defibrillator backup will be implanted at the discretion of the physician according to the ESC guidelines. In short-term analysis after 6 months, echocardiographic, laboratory and symptomatic parameters will be evaluated. Long-term analysis to assess HF hospitalization, cardiovascular mortality and pacing parameters will be performed after at least 24 months of follow-up.
Investigators hypothesize that CSP could represent a feasible and safe alternative to BiV pacing in terms of clinical and echocardiographic outcomes.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Biventricular pacing + AV node ablation
Implantation of biventricular pacemaker with or without defibrillator lead placement followed by AV node ablation. Optimal guidelines-based heart failure treatment.
Biventricular pacemaker implantation
Implantation of permanent pacemaker with biventricular stimulation with or without defibrillator lead placement using standard techniques. The right ventricle lead will be positioned in the RV apex or septum, while the left ventricle lead will be delivered to the most appropriate coronary sinus tributary, preferably posterolateral or lateral vein.
AV node ablation
Atrioventricular node ablation (AVNA) will be performed following pacemaker implantation (preferably during the same hospitalization). After femoral vein access will be obtained, the ablation catheter will be positioned to the presumed area of the AV node in the mid-septum under fluoroscopy. The location will be optimized according to the intracardiac electrograms. Ablation will be performed in a temperature-controlled mode. Successful AVNA will be recognized with an abrupt drop of heart rate to 40 bpm and will continue for 60 seconds thereafter.
Conduction system pacing + AV node ablation
Implantation of permanent pacemaker with conduction system pacing (preferably left bundle branch) with or without defibrillator lead placement followed by AV node ablation. Optimal guidelines-based heart failure treatment.
Conduction system pacing device implantation
Left bundle branch pacing (LBBP) will be the preferred pacing technique. In brief, after localizing the His bundle area the LBBP lead will be positioned approximately 1-1.5 cm distal to the His bundle position in the right ventricular septum. Before screwing the lead deep into the interventricular septum, the suitable position will be confirmed by fluoroscopic signs and adequate paced QSR morphology. Given that the pacing parameters with LBBP are typically low and stable, backup RV lead will not be mandatory. If LBBP will be unobtainable, His bundle pacing (HBP) implantation will be attempted. His bundle potential mapping will be performed with the use of the electrophysiological system and under fluoroscopic guidance. Distal HB potential with a large ventricular signal and a small atrial signal will be targeted before the pacing lead will be screwed into position. Backup RV lead will be mandatory for all patients receiving HBP devices.
AV node ablation
Atrioventricular node ablation (AVNA) will be performed following pacemaker implantation (preferably during the same hospitalization). After femoral vein access will be obtained, the ablation catheter will be positioned to the presumed area of the AV node in the mid-septum under fluoroscopy. The location will be optimized according to the intracardiac electrograms. Ablation will be performed in a temperature-controlled mode. Successful AVNA will be recognized with an abrupt drop of heart rate to 40 bpm and will continue for 60 seconds thereafter.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Biventricular pacemaker implantation
Implantation of permanent pacemaker with biventricular stimulation with or without defibrillator lead placement using standard techniques. The right ventricle lead will be positioned in the RV apex or septum, while the left ventricle lead will be delivered to the most appropriate coronary sinus tributary, preferably posterolateral or lateral vein.
Conduction system pacing device implantation
Left bundle branch pacing (LBBP) will be the preferred pacing technique. In brief, after localizing the His bundle area the LBBP lead will be positioned approximately 1-1.5 cm distal to the His bundle position in the right ventricular septum. Before screwing the lead deep into the interventricular septum, the suitable position will be confirmed by fluoroscopic signs and adequate paced QSR morphology. Given that the pacing parameters with LBBP are typically low and stable, backup RV lead will not be mandatory. If LBBP will be unobtainable, His bundle pacing (HBP) implantation will be attempted. His bundle potential mapping will be performed with the use of the electrophysiological system and under fluoroscopic guidance. Distal HB potential with a large ventricular signal and a small atrial signal will be targeted before the pacing lead will be screwed into position. Backup RV lead will be mandatory for all patients receiving HBP devices.
AV node ablation
Atrioventricular node ablation (AVNA) will be performed following pacemaker implantation (preferably during the same hospitalization). After femoral vein access will be obtained, the ablation catheter will be positioned to the presumed area of the AV node in the mid-septum under fluoroscopy. The location will be optimized according to the intracardiac electrograms. Ablation will be performed in a temperature-controlled mode. Successful AVNA will be recognized with an abrupt drop of heart rate to 40 bpm and will continue for 60 seconds thereafter.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Left ventricular ejection fraction \<50%
3. Narrow intrinsic QRS ≤ 120 ms
4. NT-proBNP \> 600 ng/L
5. Patient has provided written informed consent
6. Age between 18 years and 85 years
Exclusion Criteria
2. Life expectancy less than 12 months
3. Severe concomitant non-cardiac disease
4. Pregnancy
5. Recent (\<3 months) myocardial infarction, percutaneous or surgical myocardial revascularization
6. Significant heart valve disease (severe insufficiency or stenosis)
7. Contraindication for oral anticoagulation
8. Mechanical tricuspid valve replacement
9. Unwillingness to participate or lack of availability for follow-up
18 Years
85 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University Medical Centre Ljubljana
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
David Žižek, MD, PhD
David Žižek, assist. prof.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Andrej Pernat, MD, PhD
Role: STUDY_DIRECTOR
UMC Ljubljana
David Zizek, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
UMC Ljubljana
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University Hospital Graz - Divison of Cardiology
Graz, , Austria
Hospital Oost-Limburg (Hartzentrum Genk)
Genk, , Belgium
Acibadem City Clinic Tokuda Hospital - Department of Invasive Electrophysiology
Sofia, , Bulgaria
Clinical Hospital Center Rijeka
Rijeka, , Croatia
University Hospital of Split
Split, , Croatia
University Hospital Centre Zagreb
Zagreb, , Croatia
Central-Hospital of Northern Pest - Military Hospital
Budapest, , Hungary
County Clinical emergency hospital of Brasov - Department of Interventional Cardiology
Brasov, , Romania
University Medical Centre Ljubljana - Department of cardiology
Ljubljana, , Slovenia
University Medical Centre Ljubljana - Department of cardiovascular surgery
Ljubljana, , Slovenia
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Tan ES, Rienstra M, Wiesfeld AC, Schoonderwoerd BA, Hobbel HH, Van Gelder IC. Long-term outcome of the atrioventricular node ablation and pacemaker implantation for symptomatic refractory atrial fibrillation. Europace. 2008 Apr;10(4):412-8. doi: 10.1093/europace/eun020. Epub 2008 Feb 12.
Orlov MV, Gardin JM, Slawsky M, Bess RL, Cohen G, Bailey W, Plumb V, Flathmann H, de Metz K. Biventricular pacing improves cardiac function and prevents further left atrial remodeling in patients with symptomatic atrial fibrillation after atrioventricular node ablation. Am Heart J. 2010 Feb;159(2):264-70. doi: 10.1016/j.ahj.2009.11.012.
Chatterjee NA, Upadhyay GA, Ellenbogen KA, Hayes DL, Singh JP. Atrioventricular nodal ablation in atrial fibrillation: a meta-analysis of biventricular vs. right ventricular pacing mode. Eur J Heart Fail. 2012 Jun;14(6):661-7. doi: 10.1093/eurjhf/hfs036. Epub 2012 Mar 21.
Brignole M, Pentimalli F, Palmisano P, Landolina M, Quartieri F, Occhetta E, Calo L, Mascia G, Mont L, Vernooy K, van Dijk V, Allaart C, Fauchier L, Gasparini M, Parati G, Soranna D, Rienstra M, Van Gelder IC; APAF-CRT Trial Investigators. AV junction ablation and cardiac resynchronization for patients with permanent atrial fibrillation and narrow QRS: the APAF-CRT mortality trial. Eur Heart J. 2021 Dec 7;42(46):4731-4739. doi: 10.1093/eurheartj/ehab569.
Muthumala A, Vijayaraman P. His-Purkinje conduction system pacing and atrioventricular node ablation. Herzschrittmacherther Elektrophysiol. 2020 Jun;31(2):117-123. doi: 10.1007/s00399-020-00679-7. Epub 2020 May 6.
Wang S, Wu S, Xu L, Xiao F, Whinnett ZI, Vijayaraman P, Su L, Huang W. Feasibility and Efficacy of His Bundle Pacing or Left Bundle Pacing Combined With Atrioventricular Node Ablation in Patients With Persistent Atrial Fibrillation and Implantable Cardioverter-Defibrillator Therapy. J Am Heart Assoc. 2019 Dec 17;8(24):e014253. doi: 10.1161/JAHA.119.014253. Epub 2019 Dec 13.
Su L, Cai M, Wu S, Wang S, Xu T, Vijayaraman P, Huang W. Long-term performance and risk factors analysis after permanent His-bundle pacing and atrioventricular node ablation in patients with atrial fibrillation and heart failure. Europace. 2020 Dec 26;22(Suppl_2):ii19-ii26. doi: 10.1093/europace/euaa306.
Huang W, Su L, Wu S, Xu L, Xiao F, Zhou X, Ellenbogen KA. Benefits of Permanent His Bundle Pacing Combined With Atrioventricular Node Ablation in Atrial Fibrillation Patients With Heart Failure With Both Preserved and Reduced Left Ventricular Ejection Fraction. J Am Heart Assoc. 2017 Apr 1;6(4):e005309. doi: 10.1161/JAHA.116.005309.
Zizek D, Antolic B, Meznar AZ, Zavrl-Dzananovic D, Jan M, Stublar J, Pernat A. Biventricular versus His bundle pacing after atrioventricular node ablation in heart failure patients with narrow QRS. Acta Cardiol. 2022 May;77(3):222-230. doi: 10.1080/00015385.2021.1903196. Epub 2021 Jun 2.
Ivanovski M, Mrak M, Meznar AZ, Zizek D. Biventricular versus Conduction System Pacing after Atrioventricular Node Ablation in Heart Failure Patients with Atrial Fibrillation. J Cardiovasc Dev Dis. 2022 Jul 1;9(7):209. doi: 10.3390/jcdd9070209.
Pillai A, Kolominsky J, Koneru JN, Kron J, Shepard RK, Kalahasty G, Huang W, Verma A, Ellenbogen KA. Atrioventricular junction ablation in patients with conduction system pacing leads: A comparison of His-bundle vs left bundle branch area pacing leads. Heart Rhythm. 2022 Jul;19(7):1116-1123. doi: 10.1016/j.hrthm.2022.03.1222. Epub 2022 Mar 26.
Brugada J, Katritsis DG, Arbelo E, Arribas F, Bax JJ, Blomstrom-Lundqvist C, Calkins H, Corrado D, Deftereos SG, Diller GP, Gomez-Doblas JJ, Gorenek B, Grace A, Ho SY, Kaski JC, Kuck KH, Lambiase PD, Sacher F, Sarquella-Brugada G, Suwalski P, Zaza A; ESC Scientific Document Group. 2019 ESC Guidelines for the management of patients with supraventricular tachycardiaThe Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC). Eur Heart J. 2020 Feb 1;41(5):655-720. doi: 10.1093/eurheartj/ehz467. No abstract available.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CONDUCT-AF trial
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.