Reducing COVID-19 Related Disability in Rural Community-Dwelling Older Adults Using Smart Technology
NCT ID: NCT05379504
Last Updated: 2025-05-14
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
58 participants
INTERVENTIONAL
2022-06-01
2024-10-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Community Network-driven COVID-19 Testing and Vaccination of Vulnerable Populations in the Central US
NCT04743908
Peer Navigators for the Health and Wellness of People With Psychiatric Disabilities
NCT05018351
Mobile Mental Health Stigma Reduction Intervention Among Black Adults
NCT06316804
Collaborative Care With Smart Health Management Program for Patients With Chronic Illness
NCT03294057
Choosing Healthful Interventions
NCT00537706
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Self Management
The 5A's Behavior Change Mode \[39\] is the framework for the self-management intervention. The five "A"s will be addressed through the integration of the self-management intervention and the sensor system. There will be a minimum of four intervention sessions with each healthcare profession (OT, RN, and SW) for 12 visits per participant.
Self Management
The self-management intervention will be delivered over the course of a year. There will be a minimum of four intervention sessions with each healthcare profession (OT, RN and SW) for 12 visits per participant. The team (OT, RN and SW) will meet twice during the first 2 months to determine a lead interventionist based on the participant's SMART goals and areas of concern. The lead interventionist will have three additional sessions with the participant and will be the point-person for sensor system alerts and messages. Goal Attainment Scaling \[83\] will be administered during the quarterly interview to assess participant progress on SMART goals. This measure is administered collectively with the participant, provides further accountability, offers opportunities to the participant for reflection on progress, and is a concrete measure of "success" of the self-management intervention.
Health Education
Participant's randomized to the standard health education arm will receive the intervention at Month 1 and then months 3, 6, 9 and 12.
Standard Health Education
Participants randomized to the standard health education arm will receive the intervention at month 1 and then months 3, 6, 9, and 12 (coinciding with the quarterly interviews). The participant will use the tablet and telehealth platform to complete the interview and education session with research staff. The content of these sessions will be focused on helping the participant (and family member/caregiver as appropriate) understand their health data, assisting them with any technology issues and providing the participant with education on their condition(s) and any requested resources. Research staff will will also provide any additional health education if there are changes to conditions or new diagnoses after an outside provider visit.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Standard Health Education
Participants randomized to the standard health education arm will receive the intervention at month 1 and then months 3, 6, 9, and 12 (coinciding with the quarterly interviews). The participant will use the tablet and telehealth platform to complete the interview and education session with research staff. The content of these sessions will be focused on helping the participant (and family member/caregiver as appropriate) understand their health data, assisting them with any technology issues and providing the participant with education on their condition(s) and any requested resources. Research staff will will also provide any additional health education if there are changes to conditions or new diagnoses after an outside provider visit.
Self Management
The self-management intervention will be delivered over the course of a year. There will be a minimum of four intervention sessions with each healthcare profession (OT, RN and SW) for 12 visits per participant. The team (OT, RN and SW) will meet twice during the first 2 months to determine a lead interventionist based on the participant's SMART goals and areas of concern. The lead interventionist will have three additional sessions with the participant and will be the point-person for sensor system alerts and messages. Goal Attainment Scaling \[83\] will be administered during the quarterly interview to assess participant progress on SMART goals. This measure is administered collectively with the participant, provides further accountability, offers opportunities to the participant for reflection on progress, and is a concrete measure of "success" of the self-management intervention.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
65 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute on Aging (NIA)
NIH
University of Missouri-Columbia
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Rachel Proffitt
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Rachel M Proffitt, OTD
Role: PRINCIPAL_INVESTIGATOR
University of Missouri-Columbia
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Missouri
Columbia, Missouri, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Missouri Department of Health and Senior Services 2019. Health in rural Missouri: Biennial report 2018-2019. http://health.mo.gov/living/families/ruralhealth/pdf/biennial2019.pdf
Research and Training Center on Disability in Rural Communities. 2020. Missouri State Profile. http://rtc.ruralinstitute.umt.edu/state-profile-map-series/missouri-state-profile/
Kane, R, L, (1999). A new model of chronic care. Generations-Journal of the American Society on Aging, 23(2), 35-37
Rantz M, Phillips LJ, Galambos C, Lane K, Alexander GL, Despins L, Koopman RJ, Skubic M, Hicks L, Miller S, Craver A, Harris BH, Deroche CB. Randomized Trial of Intelligent Sensor System for Early Illness Alerts in Senior Housing. J Am Med Dir Assoc. 2017 Oct 1;18(10):860-870. doi: 10.1016/j.jamda.2017.05.012. Epub 2017 Jul 12.
Rantz MJ, Scott SD, Miller SJ, Skubic M, Phillips L, Alexander G, Koopman RJ, Musterman K, Back J. Evaluation of health alerts from an early illness warning system in independent living. Comput Inform Nurs. 2013 Jun;31(6):274-80. doi: 10.1097/NXN.0b013e318296298f.
Rantz MJ, Skubic M, Miller SJ, Galambos C, Alexander G, Keller J, Popescu M. Sensor technology to support Aging in Place. J Am Med Dir Assoc. 2013 Jun;14(6):386-91. doi: 10.1016/j.jamda.2013.02.018. Epub 2013 Apr 3.
Skubic M, Guevara RD, Rantz M. Automated Health Alerts Using In-Home Sensor Data for Embedded Health Assessment. IEEE J Transl Eng Health Med. 2015 Apr 10;3:2700111. doi: 10.1109/JTEHM.2015.2421499. eCollection 2015.
Skubic, M., Guevara, R. D., & Rantz, M. (2012). Testing classifiers for embedded health assessment. Proc., International Conference on Smart Homes and Health Telematics, Artimino, Italy, pp. 198-205
Jain, A., Keller, J., & Popescu, M. (2019, June 23-26). Explainable Al for dataset comparison, {Paper presentation}. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
Ibrahim, O. A., Keller, J., & Popescu, M. (2019) An unsupervised framework for detecting early signs of illness in eldercare. [Paper presentation}. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA
Ibrahim, O.A., Keller, J.M., & Popescu, M. (2017). Context preserving representation of daily activities in elder care. {Paper presentation}. IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Ibrahim, O.A., Popescu, M., & Keller, J.M. (2017). Unsupervised Analysis of Activity Patterns in Eldercare Monitoring. {Paper presentation}. American Medical Informatics Association (AMIA) Annual Symposium.
Wu, W., Keller, J.M., Skubic, M., Popescu, M., & Lane, K.R. (in review). Early detection of health changes in the elderly using in-home multi-sensors data streams.
Mishra, A.K., Skubic, M., Despins, L.A., Popescu, M., Rantz, M., Keller, J., & Lane, K. (2019). Development of a functional health index for older adults using the electronic health record. {Paper presentation}. IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago, IL, United States.
Robinson EL, Park G, Lane K, Skubic M, Rantz M. Technology for Healthy Independent Living: Creating a Tailored In-Home Sensor System for Older Adults and Family Caregivers. J Gerontol Nurs. 2020 Jul 1;46(7):35-40. doi: 10.3928/00989134-20200605-06.
Shelani, S., Levins, T., Robinson, E.L., Lane, K., Park, G., & Skubic, M. (2019). Development and comparison of customized voice-assistant systems for independent living older adults {Paper presentation}. HCII conference, Orlando, FL, United States
Federal Interagency Forum on Aging Related Statistics. (2016). Older Americans 2016: Key Indicators of Wellbeing. Washington DC: US Government Printing Office.
He, W., Larsen, L. J., and U.S. Census Bureau. (2014, December). Older Americans with a disability. Washington, DC, U.S. Government Printing Office.
Griffith L, Raina P, Wu H, Zhu B, Stathokostas L. Population attributable risk for functional disability associated with chronic conditions in Canadian older adults. Age Ageing. 2010 Nov;39(6):738-45. doi: 10.1093/ageing/afq105. Epub 2010 Sep 1.
Fong JH. Disability incidence and functional decline among older adults with major chronic diseases. BMC Geriatr. 2019 Nov 21;19(1):323. doi: 10.1186/s12877-019-1348-z.
Center for Disease Control and Prevention. (2012). Preventing Chronic disease. Multiple Chronic Conditions Among US Adults; A2012 Update. Retrieved from http://www.cdc.gov/pcd/issues/2014/13_0389.htm Accessed May 15, 2020.
U.S. Administration on Aging. (2014). A Profile of Older Americans; 2014. Department of Health and Human Services Washington, DC, Retrieved from http://www.aoa.acl.gov/Aging_Statistics/Profile/2014/docs/2014-Profile.pdf. Accessed May 15, 2020.
Herbert C, Molinsky JH. What Can Be Done To Better Support Older Adults To Age Successfully In Their Homes And Communities? Health Aff (Millwood). 2019 May;38(5):860-864. doi: 10.1377/hlthaff.2019.00203. Epub 2019 Apr 24.
Santos-Eggimann B, Meylan L. Older Citizens' Opinions on Long-Term Care Options: A Vignette Survey. J Am Med Dir Assoc. 2017 Apr 1;18(4):326-334. doi: 10.1016/j.jamda.2016.10.010. Epub 2016 Dec 9.
Skinner HG, Coffey R, Jones J, Heslin KC, Moy E. The effects of multiple chronic conditions on hospitalization costs and utilization for ambulatory care sensitive conditions in the United States: a nationally representative cross-sectional study. BMC Health Serv Res. 2016 Mar 1;16:77. doi: 10.1186/s12913-016-1304-y.
Schoen C, Davis K, Willink A. Medicare Beneficiaries' High Out-of-Pocket Costs: Cost Burdens by Income and Health Status. Issue Brief (Commonw Fund). 2017 May;11:1-14.
Banerjee D. The impact of Covid-19 pandemic on elderly mental health. Int J Geriatr Psychiatry. 2020 Dec;35(12):1466-1467. doi: 10.1002/gps.5320. Epub 2020 Jun 27. No abstract available.
Armitage R, Nellums LB. COVID-19 and the consequences of isolating the elderly. Lancet Public Health. 2020 May;5(5):e256. doi: 10.1016/S2468-2667(20)30061-X. Epub 2020 Mar 20. No abstract available.
Steinman MA, Perry L, Perissinotto CM. Meeting the Care Needs of Older Adults Isolated at Home During the COVID-19 Pandemic. JAMA Intern Med. 2020 Jun 1;180(6):819-820. doi: 10.1001/jamainternmed.2020.1661. No abstract available.
Beutel ME, Klein EM, Brahler E, Reiner I, Junger C, Michal M, Wiltink J, Wild PS, Munzel T, Lackner KJ, Tibubos AN. Loneliness in the general population: prevalence, determinants and relations to mental health. BMC Psychiatry. 2017 Mar 20;17(1):97. doi: 10.1186/s12888-017-1262-x.
Boyle CA, Fox MH, Havercamp SM, Zubler J. The public health response to the COVID-19 pandemic for people with disabilities. Disabil Health J. 2020 Jul;13(3):100943. doi: 10.1016/j.dhjo.2020.100943. Epub 2020 May 24.
Turk MA, McDermott S. The COVID-19 pandemic and people with disability. Disabil Health J. 2020 Jul;13(3):100944. doi: 10.1016/j.dhjo.2020.100944. Epub 2020 May 28. No abstract available.
Rantz M, Skubic M, Abbott C, Galambos C, Popescu M, Keller J, Stone E, Back J, Miller SJ, Petroski GF. Automated In-Home Fall Risk Assessment and Detection Sensor System for Elders. Gerontologist. 2015 Jun;55 Suppl 1(Suppl 1):S78-87. doi: 10.1093/geront/gnv044.
Rantz M, Lane K, Phillips LJ, Despins LA, Galambos C, Alexander GL, Koopman RJ, Hicks L, Skubic M, Miller SJ. Enhanced registered nurse care coordination with sensor technology: Impact on length of stay and cost in aging in place housing. Nurs Outlook. 2015 Nov-Dec;63(6):650-5. doi: 10.1016/j.outlook.2015.08.004. Epub 2015 Sep 8.
Galambos C, Rantz M, Back J, Jun JS, Skubic M, Miller SJ. Older Adults' Perceptions of and Preferences for a Fall Risk Assessment System: Exploring Stages of Acceptance Model. Comput Inform Nurs. 2017 Jul;35(7):331-337. doi: 10.1097/CIN.0000000000000330.
Connelly K, Molchan H, Bidanta R, Siddh S, Lowens B, Caine K, Demiris G, Siek K, Reeder B. Evaluation framework for selecting wearable activity monitors for research. Mhealth. 2021 Jan 20;7:6. doi: 10.21037/mhealth-19-253. eCollection 2021.
Glasgow RE, Funnell MM, Bonomi AE, Davis C, Beckham V, Wagner EH. Self-management aspects of the improving chronic illness care breakthrough series: implementation with diabetes and heart failure teams. Ann Behav Med. 2002 Spring;24(2):80-7. doi: 10.1207/S15324796ABM2402_04.
Wagner EH, Davis C, Schaefer J, Von Korff M, Austin B. A survey of leading chronic disease management programs: are they consistent with the literature? Manag Care Q. 1999 Summer;7(3):56-66.
Glasgow RE, Orleans CT, Wagner EH. Does the chronic care model serve also as a template for improving prevention? Milbank Q. 2001;79(4):579-612, iv-v. doi: 10.1111/1468-0009.00222.
Rantz M, Popejoy LL, Galambos C, Phillips LJ, Lane KR, Marek KD, Hicks L, Musterman K, Back J, Miller SJ, Ge B. The continued success of registered nurse care coordination in a state evaluation of aging in place in senior housing. Nurs Outlook. 2014 Jul-Aug;62(4):237-46. doi: 10.1016/j.outlook.2014.02.005. Epub 2014 Feb 22.
Boockvar KS, Lachs MS. Predictive value of nonspecific symptoms for acute illness in nursing home residents. J Am Geriatr Soc. 2003 Aug;51(8):1111-5. doi: 10.1046/j.1532-5415.2003.51360.x.
Boockvar K, Brodie HD, Lachs M. Nursing assistants detect behavior changes in nursing home residents that precede acute illness: development and validation of an illness warning instrument. J Am Geriatr Soc. 2000 Sep;48(9):1086-91. doi: 10.1111/j.1532-5415.2000.tb04784.x.
Hogan J. Why don't nurses monitor the respiratory rates of patients? Br J Nurs. 2006 May 11-24;15(9):489-92. doi: 10.12968/bjon.2006.15.9.21087.
Ridley S. The recognition and early management of critical illness. Ann R Coll Surg Engl. 2005 Sep;87(5):315-22. doi: 10.1308/003588405X60669.
Mann DM, Chen J, Chunara R, Testa PA, Nov O. COVID-19 transforms health care through telemedicine: Evidence from the field. J Am Med Inform Assoc. 2020 Jul 1;27(7):1132-1135. doi: 10.1093/jamia/ocaa072.
Laver KE, Schoene D, Crotty M, George S, Lannin NA, Sherrington C. Telerehabilitation services for stroke. Cochrane Database Syst Rev. 2013 Dec 16;2013(12):CD010255. doi: 10.1002/14651858.CD010255.pub2.
Varnfield M, Karunanithi M, Lee CK, Honeyman E, Arnold D, Ding H, Smith C, Walters DL. Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: results from a randomised controlled trial. Heart. 2014 Nov;100(22):1770-9. doi: 10.1136/heartjnl-2014-305783. Epub 2014 Jun 27.
Piotrowicz E, Baranowski R, Bilinska M, Stepnowska M, Piotrowska M, Wojcik A, Korewicki J, Chojnowska L, Malek LA, Klopotowski M, Piotrowski W, Piotrowicz R. A new model of home-based telemonitored cardiac rehabilitation in patients with heart failure: effectiveness, quality of life, and adherence. Eur J Heart Fail. 2010 Feb;12(2):164-71. doi: 10.1093/eurjhf/hfp181. Epub 2009 Dec 30.
Little, L., Wallisch, A., Pope, E., & Dunn, W. (2018). Acceptability and cost comparison of telehealth intervention for families of children with autism.
Little, L., Wallisch, A., Pope, El, & Dunn, W. (2018). Acceptability and cost comparison of a telehealth intervention for families of children with autism. Infants and Young Children. 31(4), 275-286
Weisz, J.R. (2015). Bridging the research-practice divide in youth psychotherapy. The deployment-focused model and transdiagnostic treatment. Verhaltenstherapie, 25(2), 129-132
Wainer, A.L., Dvortcsak, A., & Ingersoll, B. (2018). Designing for Dissemination: The Utility of the Deployment. Handbook of Parent-implemented interventions for a Very Young Children with Autism, 425
Wang, S. (2011). Change Detection for Eldercare Using Passive Sensing. PhD. Thesis, Electrical and Computer Engineering Dept., University of Missouri, Columbia, MO
Wang S, Skubic M, Zhu Y. Activity density map visualization and dissimilarity comparison for eldercare monitoring. IEEE Trans Inf Technol Biomed. 2012 Jul;16(4):607-14. doi: 10.1109/TITB.2012.2196439. Epub 2012 Apr 25.
Wang S, Skubic M, Zhu Y, Galambos C. Using Passive Sensing to Estimate Relative Energy Expenditure for Eldercare Monitoring. Proc IEEE Int Conf Pervasive Comput Commun. 2011 Mar 21:642-648. doi: 10.1109/PERCOMW.2011.5766968.
Heise D, Skubic M. Monitoring pulse and respiration with a non-invasive hydraulic bed sensor. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2119-23. doi: 10.1109/IEMBS.2010.5627219.
Heise D, Rosales L, Skubic M, Devaney MJ. Refinement and evaluation of a hydraulic bed sensor. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4356-60. doi: 10.1109/IEMBS.2011.6091081.
Rosales, L., Bo-Yu, S., Skkubic, M. & Ho, K.C. (2017). Heart rate estimation from hydraulic bed sensor ballistocardiogram. Journal of Ambient Intelligence and Smart Environments, 9(2), 193-207
Lydon K, Su BY, Rosales L, Enayati M, Ho KC, Rantz M, Skubic M. Robust heartbeat detection from in-home ballistocardiogram signals of older adults using a bed sensor. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7175-9. doi: 10.1109/EMBC.2015.7320047.
Starr, I., Rawson, A., Schroeder, H., & Joseph, N. (1939). Studies on the estimation of cardiac output in man, and of abnormalities in cardiac function , from the heart's recoil and the blood's impacts; the ballistocardiogram, American Journal of Physiology--Legacy Content, 127 (1), 1-28
Stone, E., & Skubic, M. (2011). Evaluation of an inexpensive depth camera for in-home gait assessment. Journal of Ambient Intelligence and Smart Environments, 3(4), 349-361.
Stone EE, Skubic M. Unobtrusive, continuous, in-home gait measurement using the Microsoft Kinect. IEEE Trans Biomed Eng. 2013 Oct;60(10):2925-32. doi: 10.1109/TBME.2013.2266341. Epub 2013 Jun 5.
Stone EE, Skubic M, Back J. Automated health alerts from Kinect-based in-home gait measurements. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2961-4. doi: 10.1109/EMBC.2014.6944244.
Banerjee T, Keller JM, Skubic M. Resident identification using kinect depth image data and fuzzy clustering techniques. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5102-5. doi: 10.1109/EMBC.2012.6347141.
Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys Ther. 2000 Sep;80(9):896-903.
Stone E, Skubic M, Rantz M, Abbott C, Miller S. Average in-home gait speed: investigation of a new metric for mobility and fall risk assessment of elders. Gait Posture. 2015 Jan;41(1):57-62. doi: 10.1016/j.gaitpost.2014.08.019. Epub 2014 Sep 6.
Stone EE, Skubic M. Fall detection in homes of older adults using the Microsoft Kinect. IEEE J Biomed Health Inform. 2015 Jan;19(1):290-301. doi: 10.1109/JBHI.2014.2312180. Epub 2014 Mar 17.
Phillips LJ, DeRoche CB, Rantz M, Alexander GL, Skubic M, Despins L, Abbott C, Harris BH, Galambos C, Koopman RJ. Using Embedded Sensors in Independent Living to Predict Gait Changes and Falls. West J Nurs Res. 2017 Jan;39(1):78-94. doi: 10.1177/0193945916662027. Epub 2016 Jul 28.
Proffitt R, Glegg S, Levac D, Lange B. End-user involvement in rehabilitation virtual reality implementation research. J Enabling Technol. 2019;13(2):92-100. doi: 10.1108/JET-10-2018-0050. Epub 2019 Jun 17.
Proffitt R, Lange B, Chen C, Winstein C. A comparison of older adults' subjective experiences with virtual and real environments during dynamic balance activities. J Aging Phys Act. 2015 Jan;23(1):24-33. doi: 10.1123/japa.2013-0126. Epub 2013 Dec 11.
Proffitt R, Lange B. Feasibility of a Customized, In-Home, Game-Based Stroke Exercise Program Using the Microsoft Kinect(R) Sensor. Int J Telerehabil. 2015 Nov 20;7(2):23-34. doi: 10.5195/ijt.2015.6177. eCollection 2015 Fall.
Reeder B, Chung J. Joe J, Lazar A, Thompson HJ, Demiris G. Understanding Older Adults' Perceptions of IN-Home Sensors Using an Obtrusiveness Framework. HCI International 2016; July 17-22, 2016; Toronto CA: Springer; 2016
Reeder B, Chung J, Le T, Thompson H, Demiris G. Assessing older adults' perceptions of sensor data and designing visual displays for ambient environments. An exploratory study. Methods Inf Med. 2014;53(3):152-9. doi: 10.3414/ME13-02-0009. Epub 2014 Apr 14.
Reeder B, Chung J, Lazar A, Joe J, Demiris G, Thompson HJ. Testing a theory-based mobility monitoring protocol using in-home sensors: a feasibility study. Res Gerontol Nurs. 2013 Oct;6(4):253-63. doi: 10.3928/19404921-20130729-02. Epub 2013 Aug 5.
Pak, R, & McLaughlin, A. (2010). Designing displays for older adults: CRC Press
Fisk AD, Rogers WA, Charness N, Czaja SJ, & Sharit J. (2009). Designing for older adults: Principles and creative human factors approaches. Boca Raton, FL: CRC press
Shelkey M, Wallace M. Katz Index of Independence in Activities of Daily Living (ADL). Director. 2000 Spring;8(2):72-3. No abstract available.
Suijker JJ, Buurman BM, ter Riet G, van Rijn M, de Haan RJ, de Rooij SE, Moll van Charante EP. Comprehensive geriatric assessment, multifactorial interventions and nurse-led care coordination to prevent functional decline in community-dwelling older persons: protocol of a cluster randomized trial. BMC Health Serv Res. 2012 Apr 1;12:85. doi: 10.1186/1472-6963-12-85.
Szanton, S.L., & Gitlin, L.N. (2016). Meeting the health care financing imperative through focusing on function. The CAPABLE studies. Public Policy & Aging Report. 26(3), 106-110
Hays RD, Spritzer KL, Schalet BD, Cella D. PROMIS(R)-29 v2.0 profile physical and mental health summary scores. Qual Life Res. 2018 Jul;27(7):1885-1891. doi: 10.1007/s11136-018-1842-3. Epub 2018 Mar 22.
Deyo RA, Katrina Ramsey, Buckley DI, Michaels L, Kobus A, Eckstrom E, Forro V, Morris C. Performance of a Patient Reported Outcomes Measurement Information System (PROMIS) Short Form in Older Adults with Chronic Musculoskeletal Pain. Pain Med. 2016 Feb;17(2):314-24. doi: 10.1093/pm/pnv046.
Lewis, T.F., Larson, M.F., & Korcuska, J.S. (2017). Strengthening the planning process of motivational interviewing using goal attainment scaling. Journal of Mental Health Counseling, 39(3), 195-210
Gearing RE, El-Bassel N, Ghesquiere A, Baldwin S, Gillies J, Ngeow E. Major ingredients of fidelity: a review and scientific guide to improving quality of intervention research implementation. Clin Psychol Rev. 2011 Feb;31(1):79-88. doi: 10.1016/j.cpr.2010.09.007. Epub 2010 Oct 7.
Snaith RP. The Hospital Anxiety And Depression Scale. Health Qual Life Outcomes. 2003 Aug 1;1:29. doi: 10.1186/1477-7525-1-29.
Cup EH, Scholte op Reimer WJ, Thijssen MC, van Kuyk-Minis MA. Reliability and validity of the Canadian Occupational Performance Measure in stroke patients. Clin Rehabil. 2003 Jul;17(4):402-9. doi: 10.1191/0269215503cr635oa.
Hibbard JH, Stockard J, Mahoney ER, Tusler M. Development of the Patient Activation Measure (PAM): conceptualizing and measuring activation in patients and consumers. Health Serv Res. 2004 Aug;39(4 Pt 1):1005-26. doi: 10.1111/j.1475-6773.2004.00269.x.
Barg-Walkow, L.H., Mitzner, T.L., & ROgers, W.A. (2014). Technology Experience Profile (TEP): Assessment and Scoring Guide. HFA-TR-1402). Atlanta, GA: Georgia Institute of Technology, School of Psychology, Human Factors and Aging Laboratory.
Green LW, Glasgow RE, Atkins D, Stange K. Making evidence from research more relevant, useful, and actionable in policy, program planning, and practice slips "twixt cup and lip". Am J Prev Med. 2009 Dec;37(6 Suppl 1):S187-91. doi: 10.1016/j.amepre.2009.08.017. No abstract available.
Glasgow RE, Klesges LM, Dzewaltowski DA, Bull SS, Estabrooks P. The future of health behavior change research: what is needed to improve translation of research into health promotion practice? Ann Behav Med. 2004 Feb;27(1):3-12. doi: 10.1207/s15324796abm2701_2.
Boyatzis RE. Thematic analysis and code development: Transforming qualitative information. London and New Delhi: Sage Publications. 1998
Turner AM, Reeder B, Ramey J. Scenarios, personas and user stories: user-centered evidence-based design representations of communicable disease investigations. J Biomed Inform. 2013 Aug;46(4):575-84. doi: 10.1016/j.jbi.2013.04.006. Epub 2013 Apr 22.
Reeder B, Turner AM. Scenario-based design: a method for connecting information system design with public health operations and emergency management. J Biomed Inform. 2011 Dec;44(6):978-88. doi: 10.1016/j.jbi.2011.07.004. Epub 2011 Jul 23.
Reeder B, Zaslavksy O, Wilamowska KM, Demiris G, Thompson HJ. Modeling the oldest old: personas to design technology-based solutions for older adults. AMIA Annu Symp Proc. 2011;2011:1166-75. Epub 2011 Oct 22.
Reeder B, Hills RA, Turner AM, Demiris G. Participatory design of an integrated information system design to support public health nurses and nurse managers. Public Health Nurs. 2014 Mar-Apr;31(2):183-92. doi: 10.1111/phn.12081. Epub 2013 Sep 30.
Reeder B, Demiris G. Building the PHARAOH framework using scenario-based design: a set of pandemic decision-making scenarios for continuity of operations in a large municipal public health agency. J Med Syst. 2010 Aug;34(4):735-9. doi: 10.1007/s10916-009-9288-3. Epub 2009 Apr 23.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2043542
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.