Testing of a New Therapeutic Vibration Device to Reduce Neuromuscular Weakness in Hospitalized Patients (Hospital Testing)

NCT ID: NCT05352100

Last Updated: 2023-05-16

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

WITHDRAWN

Clinical Phase

NA

Study Classification

INTERVENTIONAL

Study Start Date

2022-11-30

Study Completion Date

2025-03-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Objective: Test the ability of vibration to produce physiologic, biochemical, and anatomic changes consistent with exercise that would help prevent the development of muscle weakness that occurs when patients are immobile for long periods of time.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

During critical illness, patients who are immobilized for more than a few days develop severe muscle and nerve weakness despite receiving full supportive care, which may include physical therapy. In patients requiring mechanical ventilation (a device that breaths for them) for longer than 7 days, the incidence of ICU-acquired weakness is reported to be between 25% and 60%. Such weakness may contribute to increased duration of mechanical ventilation, increased length of stay in the ICU and hospital, and poor quality of life among survivors. This is part of the newly recognized Post Intensive Care Syndrome (PICS). Moreover, patients who are transferred from the ICU to a high-dependency unit (HDU), intensive therapy unit (ITU), post-operative therapy or outpatient ambulatory care need to be mobile as well as awake for any physical therapy. Patients affected by sepsis (severe blood stream infections), osteoarthritis, spinal cord injury, stroke, multiple sclerosis, cerebral palsy, cancer, and other illnesses suffer muscle loss and weakness. Early mobilization (EM) has demonstrated the ability to significantly reduce the detrimental effects of prolonged immobilization such as polyneuropathy and myopathy (nerve damage and muscle weakness), which in turn reduces the time patients spend on mechanical ventilation and the overall length of hospital stay. EM treatments include intense physical therapy, cycle ergometry, transcutaneous electrical muscle stimulation (TEMS) and continuous lateral rotational therapy (CLRT). However, carrying out intense physical therapy using therapists is impractical (especially at smaller hospitals) and cannot be implemented in heavily sedated patients (patients who cannot cooperate). Evidence suggests that vibration may be capable of producing adequate muscle contraction via muscle-spinal loops that may be sufficient to reduce or prevent nerve damage and muscle weakness caused by prolonged immobilization thus serving as an effective treatment making patients stronger when they leave the ICU.

The purpose of this study is to test a prototype vibration device and strategy on its ability to exercise large muscle groups, increase muscle blood flow, and increase circulating levels of blood chemicals associated with exercise/activity. The study will be used to find optimal vibration frequencies that provide maximal evidence of associated muscle activity. Eventually the investigators hope to see a vibration device capable of delivering a more effective therapy compared to the smaller gains derived from traditional measures of physical therapy in critically ill patients such as TEMS, CLRT and cycle ergometry to patients. The vibration device may directly benefit the patient in terms of health, length of stay and reduced re-admission, hospital staff in terms of productivity (i.e., through reduction in nursing effort) and the hospital in terms of reduced cost and return on investment. Its value is also envisioned in many other populations of immobilized acutely ill and injured patients as well as those with chronic conditions.

Originally registered as a single record, (NCT03479008) this registration represents the intervention and outcomes of testing with hospitalized patients. NCT03479008 will remain open until it is certain that no additional modifications of the device are required to go through a new round of iterative testing with healthy volunteers.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Critically Ill

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

BASIC_SCIENCE

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Hospitalized patients

This phase will recruit hospitalized bedridden patients who will be vibrated with the prototype device using various vibration frequencies to determine which frequency produces the optimal physiologic response. Physiologic responses will be determined with a number of devices capable of measuring such things as tissue oxygenation, oxygen consumption, and muscle activity. Blood samples will also be taken to measure certain chemical markers associated with activity and increase blood flow. They may receive multiple 5 minute episodes of various vibration frequencies.

Group Type EXPERIMENTAL

Therapeutic Vibration Device

Intervention Type DIAGNOSTIC_TEST

The Therapeutic Vibration Device is capable of applying force through the axial skeletal spine, through bidirectional compression loading (or prestressing) between the shoulder and the plantar surfaces of the feet. It is placed around the body like a mobile frame so that the applied vibration can affect the whole body. The vibration actuators (drivers) are mobile and can vary in size, frequency response, and force. The design minimizes the possibility of mechanical interference for ventilated/intubated patients.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Therapeutic Vibration Device

The Therapeutic Vibration Device is capable of applying force through the axial skeletal spine, through bidirectional compression loading (or prestressing) between the shoulder and the plantar surfaces of the feet. It is placed around the body like a mobile frame so that the applied vibration can affect the whole body. The vibration actuators (drivers) are mobile and can vary in size, frequency response, and force. The design minimizes the possibility of mechanical interference for ventilated/intubated patients.

Intervention Type DIAGNOSTIC_TEST

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* sick patients admitted to the ICUs at University of Michigan hospital

Exclusion Criteria

1. Acute Spinal Cord Injury
2. Acute vertebral body fracture or injury
3. Acute stroke or intracerebral hemorrhage
4. Hemodynamic instability or other event/condition believed by care team to warrant nonparticipation
5. Known pregnancy
6. Prisoner
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Michigan

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Benjamin Bassin

Professor in the Department of Emergency Medicine

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Benjamin S Bassin, MD

Role: PRINCIPAL_INVESTIGATOR

University of Michigan

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Michigan

Ann Arbor, Michigan, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

HUM00129402b

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Whole Body Vibration in Kidney Disease
NCT02413073 COMPLETED PHASE4