Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
15 participants
INTERVENTIONAL
2021-11-29
2021-12-29
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Virtual Reality Based Sensorimotor Speech Therapy
NCT02928822
Tablet-based Aphasia Therapy in the Chronic Phase
NCT03622411
Overcoming Learned Non-Use in Chronic Aphasia
NCT02012374
Links Between Motor Abilities and Language Ability Deficits in Patients With Post-stroke Aphasia
NCT05776368
Effects of Neuronavigated Theta Burst Stimulation in Therapy of Post-stroke Aphasia
NCT05303649
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Following recent evidence on experience-dependent plasticity mechanisms for successful stroke recovery and well-established theory-grounded interventions, such as ILAT, the present study aims to study the usability and improvement potential of a mobile-based aphasia rehabilitation app for stroke patients, used at home. A previous collaboration between both centers (SPECS lab and Hospital Joan XIII) used a computer-based setup. In this study by Grechuta et al. (2019), the Rehabilitation Gaming System for aphasia (RGSa) shows positive significant results on language (P= 0.001) and communication (P\<0.05) compared to conventional therapy in the long term (16 weeks). This study will assess the usability, risks, and clinical outcome of the same principles applied to a mobile application that is prescribed to be used at home for two twenty-minutes session per day during two weeks.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Experimental Group
Mobile evidence-based aphasia therapy
Mobile evidence-based aphasia therapy
Use of mobile application to practice language for 2 weeks with a recommendation of 2 sessions per day of 20 minutes. The Android application, which is a Unity-based 2D game, will be installed on the patient's own phone, and they will play individually with the support of a family member if needed. The patients are free to start and stop using the application at any time. The application is safe to use, and it consists of therapeutic training methods such as object-matching, word search, writing, and manual voice recordings.
Control Group
Conventional aphasia therapy
Conventional aphasia rehabilitation
Control Group (conventional aphasia rehabilitation). No therapy as patients are in the chronic stage, where they do not receive healthcare rehabilitation training.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Mobile evidence-based aphasia therapy
Use of mobile application to practice language for 2 weeks with a recommendation of 2 sessions per day of 20 minutes. The Android application, which is a Unity-based 2D game, will be installed on the patient's own phone, and they will play individually with the support of a family member if needed. The patients are free to start and stop using the application at any time. The application is safe to use, and it consists of therapeutic training methods such as object-matching, word search, writing, and manual voice recordings.
Conventional aphasia rehabilitation
Control Group (conventional aphasia rehabilitation). No therapy as patients are in the chronic stage, where they do not receive healthcare rehabilitation training.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* 6 or more months have passed since the stroke (chronic stage)
* Age between 18 and 90 years
* Presence of major perceptual, cognitive, motor, cognitive or neuropsychological pathology that can interfere with aphasia or make it difficult to interact with the system, including severe forms of motor impairments and apraxia, visual processing deficits, planning deficits, learning deficits, memory deficits, or attentional deficits
* Inability to understand the study participation
* Patients with an Android phone or tablet
18 Years
90 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Hospital Universitari Joan XXIII de Tarragona.
OTHER
Universitat Pompeu Fabra
OTHER
Institute for Bioengineering of Catalonia
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Institute for Bioengineering of Catalonia - Specs Lab
Barcelona, , Spain
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Ameer K, Ali K. iPad Use in Stroke Neuro-Rehabilitation. Geriatrics (Basel). 2017 Jan 6;2(1):2. doi: 10.3390/geriatrics2010002.
Bakheit AM, Shaw S, Barrett L, Wood J, Carrington S, Griffiths S, Searle K, Koutsi F. A prospective, randomized, parallel group, controlled study of the effect of intensity of speech and language therapy on early recovery from poststroke aphasia. Clin Rehabil. 2007 Oct;21(10):885-94. doi: 10.1177/0269215507078486.
Brandenburg, C., & Power, E. (2019). Mobile Technology in Aphasia Rehabilitation: Current Trends and Lessons Learnt. Everyday Technologies in Healthcare, 293-317. https://doi.org/10.1201/9781351032186-16
Engelter ST, Gostynski M, Papa S, Frei M, Born C, Ajdacic-Gross V, Gutzwiller F, Lyrer PA. Epidemiology of aphasia attributable to first ischemic stroke: incidence, severity, fluency, etiology, and thrombolysis. Stroke. 2006 Jun;37(6):1379-84. doi: 10.1161/01.STR.0000221815.64093.8c. Epub 2006 May 11.
Grechuta K, Rubio Ballester B, Espin Munne R, Usabiaga Bernal T, Molina Hervas B, Mohr B, Pulvermuller F, San Segundo R, Verschure P. Augmented Dyadic Therapy Boosts Recovery of Language Function in Patients With Nonfluent Aphasia. Stroke. 2019 May;50(5):1270-1274. doi: 10.1161/STROKEAHA.118.023729.
Grechuta K, Rubio Ballester B, Espin Munne R, Usabiaga Bernal T, Molina Hervas B, Mohr B, Pulvermuller F, San Segundo RM, Verschure PFMJ. Multisensory cueing facilitates naming in aphasia. J Neuroeng Rehabil. 2020 Sep 9;17(1):122. doi: 10.1186/s12984-020-00751-w.
Griffith, J. (2018). Encyclopedia of Clinical Neuropsychology. Encyclopedia of Clinical Neuropsychology, 2-4. https://doi.org/10.1007/978-3-319-56782-2
Hallowell, B., & Chapey, R. (2012). Introduction to language intervention strategies in adult aphasia. Language Intervention Strategies in Aphasia and Related Neurogenic Communication Disorders: Fifth Edition, (November), 3-19.
Hidaka Y, Han CE, Wolf SL, Winstein CJ, Schweighofer N. Use it and improve it or lose it: interactions between arm function and use in humans post-stroke. PLoS Comput Biol. 2012 Feb;8(2):e1002343. doi: 10.1371/journal.pcbi.1002343. Epub 2012 Feb 16.
Hilari K, Needle JJ, Harrison KL. What are the important factors in health-related quality of life for people with aphasia? A systematic review. Arch Phys Med Rehabil. 2012 Jan;93(1 Suppl):S86-95. doi: 10.1016/j.apmr.2011.05.028. Epub 2011 Nov 25.
Hinckley JJ, Hasselkus A, Ganzfried E. What people living with aphasia think about the availability of aphasia resources. Am J Speech Lang Pathol. 2013 May;22(2):S310-7. doi: 10.1044/1058-0360(2013/12-0090).
Hirsch T, Barthel M, Aarts P, Chen YA, Freivogel S, Johnson MJ, Jones TA, Jongsma MLA, Maier M, Punt D, Sterr A, Wolf SL, Heise KF. A First Step Toward the Operationalization of the Learned Non-Use Phenomenon: A Delphi Study. Neurorehabil Neural Repair. 2021 May;35(5):383-392. doi: 10.1177/1545968321999064. Epub 2021 Mar 11.
Holland A, Fromm D, Forbes M, MacWhinney B. Long-term Recovery in Stroke Accompanied by Aphasia: A Reconsideration. Aphasiology. 2017;31(2):152-165. doi: 10.1080/02687038.2016.1184221. Epub 2016 May 27.
Kim J, Thayabaranathan T, Donnan GA, Howard G, Howard VJ, Rothwell PM, Feigin V, Norrving B, Owolabi M, Pandian J, Liu L, Cadilhac DA, Thrift AG. Global Stroke Statistics 2019. Int J Stroke. 2020 Oct;15(8):819-838. doi: 10.1177/1747493020909545. Epub 2020 Mar 9.
Maceira-Elvira P, Popa T, Schmid AC, Hummel FC. Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment. J Neuroeng Rehabil. 2019 Nov 19;16(1):142. doi: 10.1186/s12984-019-0612-y.
Maier M, Ballester BR, Verschure PFMJ. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front Syst Neurosci. 2019 Dec 17;13:74. doi: 10.3389/fnsys.2019.00074. eCollection 2019.
Mayo NE, Wood-Dauphinee S, Ahmed S, Gordon C, Higgins J, McEwen S, Salbach N. Disablement following stroke. Disabil Rehabil. 1999 May-Jun;21(5-6):258-68. doi: 10.1080/096382899297684.
Moffatt, K., Pourshahid, G., & Baecker, R. M. (2017). Augmentative and alternative communication devices for aphasia: the emerging role of "smart" mobile devices. Universal Access in the Information Society, 16(1), 115-128. https://doi.org/10.1007/s10209-015-0428-x
Palmer R, Enderby P, Paterson G. Using computers to enable self-management of aphasia therapy exercises for word finding: the patient and carer perspective. Int J Lang Commun Disord. 2013 Sep-Oct;48(5):508-21. doi: 10.1111/1460-6984.12024. Epub 2013 Jun 18.
Pulvermuller F. Brain mechanisms linking language and action. Nat Rev Neurosci. 2005 Jul;6(7):576-82. doi: 10.1038/nrn1706.
Pulvermuller F, Berthier ML. Aphasia therapy on a neuroscience basis. Aphasiology. 2008 Jun;22(6):563-599. doi: 10.1080/02687030701612213. Epub 2008 May 21.
Pulvermuller F, Neininger B, Elbert T, Mohr B, Rockstroh B, Koebbel P, Taub E. Constraint-induced therapy of chronic aphasia after stroke. Stroke. 2001 Jul;32(7):1621-6. doi: 10.1161/01.str.32.7.1621.
Stahl B, Mohr B, Dreyer FR, Lucchese G, Pulvermuller F. Using language for social interaction: Communication mechanisms promote recovery from chronic non-fluent aphasia. Cortex. 2016 Dec;85:90-99. doi: 10.1016/j.cortex.2016.09.021. Epub 2016 Oct 15.
Tippett DC, Niparko JK, Hillis AE. Aphasia: Current Concepts in Theory and Practice. J Neurol Transl Neurosci. 2014 Jan;2(1):1042.
Vallila-Rohter S, Kiran S. Non-linguistic learning and aphasia: evidence from a paired associate and feedback-based task. Neuropsychologia. 2013 Jan;51(1):79-90. doi: 10.1016/j.neuropsychologia.2012.10.024. Epub 2012 Nov 2.
Zhou L, Bao J, Setiawan IMA, Saptono A, Parmanto B. The mHealth App Usability Questionnaire (MAUQ): Development and Validation Study. JMIR Mhealth Uhealth. 2019 Apr 11;7(4):e11500. doi: 10.2196/11500.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Document Type: Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
RNAAT2021
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.