Goal-directed Hemodynamic Management and Kidney Injury After Radical Nephrectomy or Nephroureterectomy

NCT ID: NCT05149196

Last Updated: 2025-06-03

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Clinical Phase

NA

Total Enrollment

1724 participants

Study Classification

INTERVENTIONAL

Study Start Date

2025-02-10

Study Completion Date

2034-12-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Radical nephrectomy and nephroureterectomy are common operations for the treatment of renal cell carcinoma and upper tract urothelial carcinoma, respectively. However, acute kidney injury frequently occurs after surgery. And the occurrence of acute kidney injury is associated with an increased risk of chronic kidney disease. Intraoperative hypotension is identified as an important risk factor of postoperative acute kidney injury. Preliminary studies showed that goal-directed hemodynamic management may reduce kidney injury after surgery but requires further demonstration. We hypothesized that goal-directed hemodynamic management combining hydration, inotropes, and forced diuresis to maintain pulse pressure variation \<9%, mean arterial pressure ≥85 mmHg, and urine flow rate \>200 ml/h (3 ml/kg/h) may reduce the incidence of acute kidney injury and improve long-term renal outcome after radical nephrectomy or nephroureterectomy. The purpose of this study is to investigate the effect of goal-directed hemodynamic management on the occurrence of acute and persistent kidney injury in patients following radical nephrectomy and nephroureterectomy.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Renal cancer accounts for 20.3% of urinary system tumors, and the incidence is still increasing. Surgical resection is the main treatment of renal cancer; radical nephrectomy is the standard operation for renal cancer of stage T2 or above. For upper tract urothelial carcinoma (UTUC) which includes renal pelvis cancer and ureteral cancer, radical nephroureterectomy is the gold standard treatment. Both procedures involve the removal of one kidney. Acute kidney injury (AKI) is a common complication after radical nephrectomy and nephroureterectomy, with reported incidence from 53.9% to 72.7%. AKI is associated with the development of chronic kidney disease (CKD) and is an independent risk factor of new onset CKD in patients without underlying kidney disease. A meta-analysis showed that, at one year after surgery, patients with AKI had a 2.7-fold increased risk of new onset or progression of CKD and a 4.8-fold increased risk of end-stage renal disease. Moreover, even mild AKI is associated with renal insufficiency at 1 to 2 years after surgery.

Taking active measures to reduce the incidence of AKI may improve long-term renal function after radical nephrectomy and nephroureterectomy. Many clinical studies show that intraoperative hypotension is an important risk factor of postoperative kidney injury. For example, a study found that intraoperative mean arterial pressure (MAP) \<65 mmHg or a decrease of more than 20% from baseline was associated with an increased risk of postoperative AKI; the risk of AKI increased alone with prolonged duration of hypotension. However, recent randomized controlled trials showed inconsistent results regarding the effect of tight blood pressure management strategy on kidney outcome. Relevant studies indicated that hydration with forced diuresis and inotropes to maintain cardiac output and blood pressure might improve renal outcome.

In a previous pilot trial of the authors, goal-directed hemodynamic management combining hydration and inotropics reduced the incidence of AKI by about 40% in patients following partial nephrectomy. However, the difference was not statistically significant due to insufficient sample size. The purpose of this trial is to investigate whether goal-directed intraoperative hemodynamic management combining hydration, inotropics, and forced diuresis can reduce the occurrence of acute and persistent kidney injury in patients undergoing radical nephrectomy and nephroureterectomy.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Nephrectomy Nephroureterectomy Hemodynamic Management Acute Kidney Injury Chronic Kidney Diseases

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

PREVENTION

Blinding Strategy

DOUBLE

Participants Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Targeted blood pressure management

During anesthesia, hemodynamic managements include active hydration (\>10 ml/kg/h), use of inotropes (dobutamine), and forced diuresis; the targets are to maintain pulse pressure variation \<9%, mean arterial pressure ≥85 mmHg, and urine output \>200 ml/h (3ml/kg/h).

During the first 48 hours after surgery, systolic blood pressure is maintained ≥110 mmHg or within 20% of baseline by delaying antihypertensive resumption, providing fluid challenge, and/or vasoactive infusion.

Group Type EXPERIMENTAL

Targeted hemodynamic management

Intervention Type OTHER

During anesthesia, hemodynamic managements include active hydration (\>10 ml/kg/h), use of inotropes (dobutamine), and forced diuresis; the targets are to maintain pulse pressure variation \<9%, mean arterial pressure ≥85 mmHg, and urine output \>200 ml/h (3ml/kg/h).

During the first 48 hours after surgery, systolic blood pressure is maintained ≥110 mmHg or within 20% of baseline by delaying antihypertensive resumption, providing fluid challenge, and/or vasoactive infusion.

Routine care

During anesthesia, hemodynamic managements are conducted according to routine practice and usually include fluids infusion at a rate of 6-8 ml/kg/h without inotropics; the targets are to maintain mean arterial pressure ≥60 mmHg and urine output \>0.5 ml/kg/h.

During the first 48 hours after surgery, hemodynamic management is performed according to routine practice.

Group Type ACTIVE_COMPARATOR

Routine care

Intervention Type OTHER

During anesthesia, hemodynamic managements are conducted according to routine practice and usually include fluid infusion at a rate of 6-8 ml/kg/h without inotropics; the targets are to maintain mean arterial pressure ≥60 mmHg and urine output \>0.5 ml/kg/h.

During the first 48 hours after surgery, hemodynamic management is performed according to routine practice.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Targeted hemodynamic management

During anesthesia, hemodynamic managements include active hydration (\>10 ml/kg/h), use of inotropes (dobutamine), and forced diuresis; the targets are to maintain pulse pressure variation \<9%, mean arterial pressure ≥85 mmHg, and urine output \>200 ml/h (3ml/kg/h).

During the first 48 hours after surgery, systolic blood pressure is maintained ≥110 mmHg or within 20% of baseline by delaying antihypertensive resumption, providing fluid challenge, and/or vasoactive infusion.

Intervention Type OTHER

Routine care

During anesthesia, hemodynamic managements are conducted according to routine practice and usually include fluid infusion at a rate of 6-8 ml/kg/h without inotropics; the targets are to maintain mean arterial pressure ≥60 mmHg and urine output \>0.5 ml/kg/h.

During the first 48 hours after surgery, hemodynamic management is performed according to routine practice.

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Age of 18 years or older;
2. Scheduled to undergo unilateral radical nephrectomy for renal cancer or unilateral radical nephroureterectomy for upper tract urothelial carcinoma.

Exclusion Criteria

1. Diagnosed with chronic kidney disease stage 4 or stage 5 (GFR\<30 ml/min/1.73m2) before surgery;
2. Uncontrolled severe hypertension (systolic blood pressure ≥180 mmHg or diastolic blood pressure ≥110 mmHg);
3. Combined with cardiovascular diseases with Revised Cardiac Risk Index (RCRI) \>1 or metabolic equivalents (METs) \<4;
4. Unable to communicate due to severe dementia, language barrier, or end-stage disease before surgery;
5. Other conditions that are considered unsuitable for inclusion (specific reasons should be indicated).
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Peking University First Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Dong-Xin Wang

Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Dong-Xin Wang, MD, PhD

Role: PRINCIPAL_INVESTIGATOR

Peking University First Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Beijing University First Hospital

Beijing, Beijing Municipality, China

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

China

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Dong-Xin Wang, MD,PhD

Role: CONTACT

86 10 83572784

Qiongfang Wu, MD

Role: CONTACT

86 83575138

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Dong-Xin Wang, MD, PHD

Role: primary

86 10 83572784

Qiong-Fang Wu, MD

Role: backup

+86 83575138

References

Explore related publications, articles, or registry entries linked to this study.

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.

Reference Type BACKGROUND
PMID: 31912902 (View on PubMed)

Klatte T, Rossi SH, Stewart GD. Prognostic factors and prognostic models for renal cell carcinoma: a literature review. World J Urol. 2018 Dec;36(12):1943-1952. doi: 10.1007/s00345-018-2309-4. Epub 2018 Apr 30.

Reference Type BACKGROUND
PMID: 29713755 (View on PubMed)

Cho A, Lee JE, Kwon GY, Huh W, Lee HM, Kim YG, Kim DJ, Oh HY, Choi HY. Post-operative acute kidney injury in patients with renal cell carcinoma is a potent risk factor for new-onset chronic kidney disease after radical nephrectomy. Nephrol Dial Transplant. 2011 Nov;26(11):3496-501. doi: 10.1093/ndt/gfr094. Epub 2011 Mar 15.

Reference Type BACKGROUND
PMID: 21406544 (View on PubMed)

Garofalo C, Liberti ME, Russo D, Russo L, Fuiano G, Cianfrone P, Conte G, De Nicola L, Minutolo R, Borrelli S. Effect of post-nephrectomy acute kidney injury on renal outcome: a retrospective long-term study. World J Urol. 2018 Jan;36(1):59-63. doi: 10.1007/s00345-017-2104-7. Epub 2017 Oct 23.

Reference Type BACKGROUND
PMID: 29063267 (View on PubMed)

Shin S, Han Y, Park H, Chung YS, Ahn H, Kim CS, Cho YP, Kwon TW. Risk factors for acute kidney injury after radical nephrectomy and inferior vena cava thrombectomy for renal cell carcinoma. J Vasc Surg. 2013 Oct;58(4):1021-7. doi: 10.1016/j.jvs.2013.02.247. Epub 2013 Apr 13.

Reference Type BACKGROUND
PMID: 23591189 (View on PubMed)

Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014 Jul 3;371(1):58-66. doi: 10.1056/NEJMra1214243. No abstract available.

Reference Type BACKGROUND
PMID: 24988558 (View on PubMed)

See EJ, Jayasinghe K, Glassford N, Bailey M, Johnson DW, Polkinghorne KR, Toussaint ND, Bellomo R. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int. 2019 Jan;95(1):160-172. doi: 10.1016/j.kint.2018.08.036. Epub 2018 Nov 23.

Reference Type BACKGROUND
PMID: 30473140 (View on PubMed)

Turan A, Cohen B, Adegboye J, Makarova N, Liu L, Mascha EJ, Qiu Y, Irefin S, Wakefield BJ, Ruetzler K, Sessler DI. Mild Acute Kidney Injury after Noncardiac Surgery Is Associated with Long-term Renal Dysfunction: A Retrospective Cohort Study. Anesthesiology. 2020 May;132(5):1053-1061. doi: 10.1097/ALN.0000000000003109.

Reference Type BACKGROUND
PMID: 31929326 (View on PubMed)

Kim WH, Shin KW, Ji SH, Jang YE, Lee JH, Jeong CW, Kwak C, Lim YJ. Robust Association between Acute Kidney Injury after Radical Nephrectomy and Long-term Renal Function. J Clin Med. 2020 Feb 25;9(3):619. doi: 10.3390/jcm9030619.

Reference Type BACKGROUND
PMID: 32106477 (View on PubMed)

Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, Cywinski J, Thabane L, Sessler DI. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology. 2013 Sep;119(3):507-15. doi: 10.1097/ALN.0b013e3182a10e26.

Reference Type BACKGROUND
PMID: 23835589 (View on PubMed)

Sun LY, Wijeysundera DN, Tait GA, Beattie WS. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology. 2015 Sep;123(3):515-23. doi: 10.1097/ALN.0000000000000765.

Reference Type BACKGROUND
PMID: 26181335 (View on PubMed)

Monk TG, Bronsert MR, Henderson WG, Mangione MP, Sum-Ping ST, Bentt DR, Nguyen JD, Richman JS, Meguid RA, Hammermeister KE. Association between Intraoperative Hypotension and Hypertension and 30-day Postoperative Mortality in Noncardiac Surgery. Anesthesiology. 2015 Aug;123(2):307-19. doi: 10.1097/ALN.0000000000000756.

Reference Type BACKGROUND
PMID: 26083768 (View on PubMed)

Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, Kurz A. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery: A Retrospective Cohort Analysis. Anesthesiology. 2017 Jan;126(1):47-65. doi: 10.1097/ALN.0000000000001432.

Reference Type BACKGROUND
PMID: 27792044 (View on PubMed)

Wesselink EM, Kappen TH, Torn HM, Slooter AJC, van Klei WA. Intraoperative hypotension and the risk of postoperative adverse outcomes: a systematic review. Br J Anaesth. 2018 Oct;121(4):706-721. doi: 10.1016/j.bja.2018.04.036. Epub 2018 Jun 20.

Reference Type BACKGROUND
PMID: 30236233 (View on PubMed)

Futier E, Lefrant JY, Guinot PG, Godet T, Lorne E, Cuvillon P, Bertran S, Leone M, Pastene B, Piriou V, Molliex S, Albanese J, Julia JM, Tavernier B, Imhoff E, Bazin JE, Constantin JM, Pereira B, Jaber S; INPRESS Study Group. Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA. 2017 Oct 10;318(14):1346-1357. doi: 10.1001/jama.2017.14172.

Reference Type BACKGROUND
PMID: 28973220 (View on PubMed)

Shin CH, Long DR, McLean D, Grabitz SD, Ladha K, Timm FP, Thevathasan T, Pieretti A, Ferrone C, Hoeft A, Scheeren TWL, Thompson BT, Kurth T, Eikermann M. Effects of Intraoperative Fluid Management on Postoperative Outcomes: A Hospital Registry Study. Ann Surg. 2018 Jun;267(6):1084-1092. doi: 10.1097/SLA.0000000000002220.

Reference Type BACKGROUND
PMID: 28288059 (View on PubMed)

Myles PS, McIlroy DR, Bellomo R, Wallace S. Importance of intraoperative oliguria during major abdominal surgery: findings of the Restrictive versus Liberal Fluid Therapy in Major Abdominal Surgery trial. Br J Anaesth. 2019 Jun;122(6):726-733. doi: 10.1016/j.bja.2019.01.010. Epub 2019 Feb 16.

Reference Type BACKGROUND
PMID: 30916001 (View on PubMed)

Giglio M, Dalfino L, Puntillo F, Brienza N. Hemodynamic goal-directed therapy and postoperative kidney injury: an updated meta-analysis with trial sequential analysis. Crit Care. 2019 Jun 26;23(1):232. doi: 10.1186/s13054-019-2516-4.

Reference Type BACKGROUND
PMID: 31242941 (View on PubMed)

Kellum JA, Ronco C, Mehta RL. Fluid management in acute kidney injury. Int J Artif Organs. 2008 Feb;31(2):94-5. doi: 10.1177/039139880803100203. No abstract available.

Reference Type BACKGROUND
PMID: 18311726 (View on PubMed)

Wu QF, Kong H, Xu ZZ, Li HJ, Mu DL, Wang DX. Impact of goal-directed hemodynamic management on the incidence of acute kidney injury in patients undergoing partial nephrectomy: a pilot randomized controlled trial. BMC Anesthesiol. 2021 Mar 3;21(1):67. doi: 10.1186/s12871-021-01288-8.

Reference Type BACKGROUND
PMID: 33658007 (View on PubMed)

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009 May 5;150(9):604-12. doi: 10.7326/0003-4819-150-9-200905050-00006.

Reference Type BACKGROUND
PMID: 19414839 (View on PubMed)

Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179-84. doi: 10.1159/000339789. Epub 2012 Aug 7. No abstract available.

Reference Type BACKGROUND
PMID: 22890468 (View on PubMed)

Ficarra V, Novara G, Secco S, Macchi V, Porzionato A, De Caro R, Artibani W. Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur Urol. 2009 Nov;56(5):786-93. doi: 10.1016/j.eururo.2009.07.040. Epub 2009 Aug 4.

Reference Type BACKGROUND
PMID: 19665284 (View on PubMed)

Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004 Aug;240(2):205-13. doi: 10.1097/01.sla.0000133083.54934.ae.

Reference Type BACKGROUND
PMID: 15273542 (View on PubMed)

Pancaro C, Shah N, Pasma W, Saager L, Cassidy R, van Klei W, Kooij F, Vittali D, Hollmann MW, Kheterpal S, Lirk P. Risk of Major Complications After Perioperative Norepinephrine Infusion Through Peripheral Intravenous Lines in a Multicenter Study. Anesth Analg. 2020 Oct;131(4):1060-1065. doi: 10.1213/ANE.0000000000004445.

Reference Type BACKGROUND
PMID: 32925324 (View on PubMed)

Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol. 2018 Oct 30;72(18):2231-2264. doi: 10.1016/j.jacc.2018.08.1038. Epub 2018 Aug 25. No abstract available.

Reference Type BACKGROUND
PMID: 30153967 (View on PubMed)

Chiu C, Fong N, Lazzareschi D, Mavrothalassitis O, Kothari R, Chen LL, Pirracchio R, Kheterpal S, Domino KB, Mathis M, Legrand M. Fluids, vasopressors, and acute kidney injury after major abdominal surgery between 2015 and 2019: a multicentre retrospective analysis. Br J Anaesth. 2022 Sep;129(3):317-326. doi: 10.1016/j.bja.2022.05.002. Epub 2022 Jun 8.

Reference Type BACKGROUND
PMID: 35688657 (View on PubMed)

Briguori C, D'Amore C, De Micco F, Signore N, Esposito G, Visconti G, Airoldi F, Signoriello G, Focaccio A. Left Ventricular End-Diastolic Pressure Versus Urine Flow Rate-Guided Hydration in Preventing Contrast-Associated Acute Kidney Injury. JACC Cardiovasc Interv. 2020 Sep 14;13(17):2065-2074. doi: 10.1016/j.jcin.2020.04.051.

Reference Type BACKGROUND
PMID: 32912462 (View on PubMed)

Luckraz H, Giri R, Wrigley B, Nagarajan K, Senanayake E, Sharman E, Beare L, Nevill A. Reduction in acute kidney injury post cardiac surgery using balanced forced diuresis: a randomized, controlled trial. Eur J Cardiothorac Surg. 2021 Apr 13;59(3):562-569. doi: 10.1093/ejcts/ezaa395.

Reference Type BACKGROUND
PMID: 33236105 (View on PubMed)

Wu X, Jiang Z, Ying J, Han Y, Chen Z. Optimal blood pressure decreases acute kidney injury after gastrointestinal surgery in elderly hypertensive patients: A randomized study: Optimal blood pressure reduces acute kidney injury. J Clin Anesth. 2017 Dec;43:77-83. doi: 10.1016/j.jclinane.2017.09.004. Epub 2017 Oct 19.

Reference Type BACKGROUND
PMID: 29055803 (View on PubMed)

Wanner PM, Wulff DU, Djurdjevic M, Korte W, Schnider TW, Filipovic M. Targeting Higher Intraoperative Blood Pressures Does Not Reduce Adverse Cardiovascular Events Following Noncardiac Surgery. J Am Coll Cardiol. 2021 Nov 2;78(18):1753-1764. doi: 10.1016/j.jacc.2021.08.048.

Reference Type BACKGROUND
PMID: 34711333 (View on PubMed)

Marcucci M, Painter TW, Conen D, Lomivorotov V, Sessler DI, Chan MTV, Borges FK, Leslie K, Duceppe E, Martinez-Zapata MJ, Wang CY, Xavier D, Ofori SN, Wang MK, Efremov S, Landoni G, Kleinlugtenbelt YV, Szczeklik W, Schmartz D, Garg AX, Short TG, Wittmann M, Meyhoff CS, Amir M, Torres D, Patel A, Ruetzler K, Parlow JL, Tandon V, Fleischmann E, Polanczyk CA, Lamy A, Jayaram R, Astrakov SV, Wu WKK, Cheong CC, Ayad S, Kirov M, de Nadal M, Likhvantsev VV, Paniagua P, Aguado HJ, Maheshwari K, Whitlock RP, McGillion MH, Vincent J, Copland I, Balasubramanian K, Biccard BM, Srinathan S, Ismoilov S, Pettit S, Stillo D, Kurz A, Belley-Cote EP, Spence J, McIntyre WF, Bangdiwala SI, Guyatt G, Yusuf S, Devereaux PJ; POISE-3 Trial Investigators and Study Groups. Hypotension-Avoidance Versus Hypertension-Avoidance Strategies in Noncardiac Surgery : An International Randomized Controlled Trial. Ann Intern Med. 2023 May;176(5):605-614. doi: 10.7326/M22-3157. Epub 2023 Apr 25.

Reference Type BACKGROUND
PMID: 37094336 (View on PubMed)

Saugel B, Fletcher N, Gan TJ, Grocott MPW, Myles PS, Sessler DI; PeriOperative Quality Initiative XI (POQI XI) Workgroup Members. PeriOperative Quality Initiative (POQI) international consensus statement on perioperative arterial pressure management. Br J Anaesth. 2024 Aug;133(2):264-276. doi: 10.1016/j.bja.2024.04.046. Epub 2024 Jun 4.

Reference Type BACKGROUND
PMID: 38839472 (View on PubMed)

Dudinec JV, Ortiz-Melo DI, Lipkin ME, Abern MR, Shah AM, Inman BA. Advanced chronic kidney disease; A comparison between nephroureterectomy and nephron-sparing surgery for upper tract urothelial carcinoma. Urol Oncol. 2023 Jun;41(6):295.e19-295.e25. doi: 10.1016/j.urolonc.2022.11.020. Epub 2022 Dec 14.

Reference Type BACKGROUND
PMID: 36526526 (View on PubMed)

Tafuri A, Marchioni M, Cerrato C, Mari A, Tellini R, Odorizzi K, Veccia A, Amparore D, Shakir A, Carbonara U, Panunzio A, Trovato F, Catellani M, Janello LMI, Bianchi L, Novara G, Dal Moro F, Schiavina R, De Lorenzis E, Parma P, Cimino S, De Cobelli O, Maiorino F, Bove P, Crocerossa F, Cantiello F, D'Andrea D, Di Cosmo F, Porpiglia F, Ditonno P, Montanari E, Soria F, Gontero P, Liguori G, Trombetta C, Mantica G, Borghesi M, Terrone C, Del Giudice F, Sciarra A, Galosi A, Moschini M, Shariat SF, Di Nicola M, Minervini A, Ferro M, Cerruto MA, Schips L, Pagliarulo V, Antonelli A. Changes in renal function after nephroureterectomy for upper urinary tract carcinoma: analysis of a large multicenter cohort (Radical Nephroureterectomy Outcomes (RaNeO) Research Consortium). World J Urol. 2022 Nov;40(11):2771-2779. doi: 10.1007/s00345-022-04156-3. Epub 2022 Oct 6.

Reference Type BACKGROUND
PMID: 36203101 (View on PubMed)

Tafuri A, Odorizzi K, Di Filippo G, Cerrato C, Fassio G, Serafin E, Princiotta A, D'Aietti D, Gozzo A, Porcaro AB, Brunelli M, Cerruto MA, Antonelli A. Acute kidney injury strongly influences renal function after radical nephroureterectomy for upper tract urothelial carcinoma: A single-centre experience. Arch Ital Urol Androl. 2021 Mar 18;93(1):9-14. doi: 10.4081/aiua.2021.1.9.

Reference Type BACKGROUND
PMID: 33754601 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2021-417

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.