Effect of GnRH Agonist vs GnRH Antagonist on Oocyte Morphology During IVF/ICSI
NCT ID: NCT04724486
Last Updated: 2023-10-24
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE4
50 participants
INTERVENTIONAL
2020-08-22
2022-07-15
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effect of GnRH Agonist vs GnRH Antagonist on Oocyte Morphology in Polycystic Ovary Syndrome Patients During IVF/ICSI
NCT04727684
Effect of GnRH Agonist vs GnRH Antagonist on IVF/ICSI Outcomes.
NCT04724343
Ovarian Stimulation Using Recombinant Follicle-stimulating Hormone (FSH) and Gonadotrophin Releasing Hormone (GnRH) Agonist in Alternate Days
NCT01468441
Effect of GnRH Agonist vs GnRH Antagonist on IVF/ICSI Outcomes in Polycystic Ovary Syndrome Patients.
NCT04727671
GnRH Antagonist Versus GnRH Agonist in Polycystic Ovary Syndrome During in Vitro Fertilization - Embryo Transfer
NCT01402336
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Agonist Group (Long protocol):
The pituitary down-regulation in this group will be carried out using 0.05-0.1 mg of Triptorelin acetate subcutaneously (SC) once daily from the mid-luteal phase (day 21) of the menstrual cycle until the ovulation triggering day. When the suppressive effect is obtained, ovarian stimulation will commence with recombinant Follicle-Stimulating Hormone (r-FSH) or r-FSH + human Menopausal Gonadotropin (hMG) and the dose will be adjusted according to the ovarian response. Ovulation will be triggered by the administration of 10,000 IU of human Chorionic Gonadotropin (hCG) when at least three follicles become more than 16-17 mm. After 35±2 hours of ovulation triggering, the oocytes will be retrieved by transvaginal ultrasound-guided follicle aspiration. Then they will be prepared to undergo an Intracytoplasmic Sperm Injection (ICSI).
Triptorelin acetate
0.05-0.1 mg subcutaneously (SC) once daily from the mid-luteal phase (day 21) of the cycle until the day of ovulation triggering.
recombinant-FSH or recombinant-FSH + human Menopausal Gonadotropin
Dosage adjustment according to the ovarian response.
Human Chorionic Gonadotropin (hCG)
Ovulation will be triggered by the administration of 10,000 IU of human chorionic gonadotropin when at least three follicles become more than 16-17 mm.
Antagonist Group (Flexible protocol):
The ovarian stimulation in this group will be started with recombinant Follicle-Stimulating Hormone (r-FSH) or r-FSH + human Menopausal Gonadotropin (hMG) on the third day of the menstrual cycle and the dose will be adjusted according to the ovarian response. Initiation of 0.25 mg of GnRH antagonist; Cetrorelix; will take place after detecting a leading follicle diameter ≥ 14 mm. GnRH antagonist administration will be continued till the day of ovulation triggering, which will be accomplished by given 10,000 IU of human Chorionic Gonadotropin (hCG) when at least three follicles become more than 16-17 mm. After 35±2 hours of ovulation triggering, the oocytes will be retrieved by transvaginal ultrasound-guided follicle aspiration. Then they will be prepared to undergo an Intracytoplasmic Sperm Injection (ICSI).
Cetrorelix
0.25 mg subcutaneously (SC) once daily starting from the day detecting a leading follicle diameter ≥ 14 mm until the day of ovulation triggering.
recombinant-FSH or recombinant-FSH + human Menopausal Gonadotropin
Dosage adjustment according to the ovarian response.
Human Chorionic Gonadotropin (hCG)
Ovulation will be triggered by the administration of 10,000 IU of human chorionic gonadotropin when at least three follicles become more than 16-17 mm.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Triptorelin acetate
0.05-0.1 mg subcutaneously (SC) once daily from the mid-luteal phase (day 21) of the cycle until the day of ovulation triggering.
Cetrorelix
0.25 mg subcutaneously (SC) once daily starting from the day detecting a leading follicle diameter ≥ 14 mm until the day of ovulation triggering.
recombinant-FSH or recombinant-FSH + human Menopausal Gonadotropin
Dosage adjustment according to the ovarian response.
Human Chorionic Gonadotropin (hCG)
Ovulation will be triggered by the administration of 10,000 IU of human chorionic gonadotropin when at least three follicles become more than 16-17 mm.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age: 18-39 years.
* Both ovaries present.
Exclusion Criteria
* History of three or more previous IVF failures.
* Patients with hormonal disorders like hyperprolactinemia, thyroid disorders.
* Patients with Polycystic Ovarian Syndrome.
* Patients who previously undergo Unilateral Oophorectomy.
* Patients with chronic diseases: diabetes mellitus, cardiovascular diseases, liver diseases, kidney diseases.
* Patients with diseases may affect IVF outcomes: Endometriosis, uterine fibroids, Hydrosalpinx, Adenomyosis, autoimmune diseases,
* Cancer.
18 Years
39 Years
FEMALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Damascus University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Sally Kadoura, B Pharm, MD
Role: PRINCIPAL_INVESTIGATOR
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Damascus, Syria
Abdul Hakim Nattouf, MD, PhD
Role: STUDY_DIRECTOR
Professor at Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Damascus, Syria
Marwan Alhalabi, MD, PhD
Role: STUDY_DIRECTOR
Professor at Department of Embryology and Reproductive Medicine, Faculty of Medicine, Damascus University, Damascus, Syria.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Orient Hospital
Damascus, , Syria
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Aguilar-Rojas A, Huerta-Reyes M. Human gonadotropin-releasing hormone receptor-activated cellular functions and signaling pathways in extra-pituitary tissues and cancer cells (Review). Oncol Rep. 2009 Nov;22(5):981-90. doi: 10.3892/or_00000525.
Cheung LW, Wong AS. Gonadotropin-releasing hormone: GnRH receptor signaling in extrapituitary tissues. FEBS J. 2008 Nov;275(22):5479-95. doi: 10.1111/j.1742-4658.2008.06677.x.
Setti AS, Figueira RC, de Almeida Ferreira Braga DP, Azevedo MC, Iaconelli A Jr, Borges E Jr. Oocytes with smooth endoplasmic reticulum clusters originate blastocysts with impaired implantation potential. Fertil Steril. 2016 Dec;106(7):1718-1724. doi: 10.1016/j.fertnstert.2016.09.006. Epub 2016 Oct 12.
Sfontouris IA, Lainas GT, Lainas TG, Faros E, Banti M, Kardara K, Anagnostopoulou K, Kontos H, Petsas GK, Kolibianakis EM. Complex chromosomal aberrations in a fetus originating from oocytes with smooth endoplasmic reticulum (SER) aggregates. Syst Biol Reprod Med. 2018 Aug;64(4):283-290. doi: 10.1080/19396368.2018.1466375. Epub 2018 May 2.
Stigliani S, Moretti S, Casciano I, Canepa P, Remorgida V, Anserini P, Scaruffi P. Presence of aggregates of smooth endoplasmic reticulum in MII oocytes affects oocyte competence: molecular-based evidence. Mol Hum Reprod. 2018 Jun 1;24(6):310-317. doi: 10.1093/molehr/gay018.
Setti AS, Figueira RC, Braga DP, Colturato SS, Iaconelli A Jr, Borges E Jr. Relationship between oocyte abnormal morphology and intracytoplasmic sperm injection outcomes: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2011 Dec;159(2):364-70. doi: 10.1016/j.ejogrb.2011.07.031. Epub 2011 Aug 6.
Lazzaroni-Tealdi E, Barad DH, Albertini DF, Yu Y, Kushnir VA, Russell H, Wu YG, Gleicher N. Oocyte Scoring Enhances Embryo-Scoring in Predicting Pregnancy Chances with IVF Where It Counts Most. PLoS One. 2015 Dec 2;10(12):e0143632. doi: 10.1371/journal.pone.0143632. eCollection 2015.
Cota AM, Oliveira JB, Petersen CG, Mauri AL, Massaro FC, Silva LF, Nicoletti A, Cavagna M, Baruffi RL, Franco JG Jr. GnRH agonist versus GnRH antagonist in assisted reproduction cycles: oocyte morphology. Reprod Biol Endocrinol. 2012 Apr 27;10:33. doi: 10.1186/1477-7827-10-33.
Zanetti BF, Braga DPAF, Setti AS, Iaconelli A Jr, Borges E Jr. Effect of GnRH analogues for pituitary suppression on oocyte morphology in repeated ovarian stimulation cycles. JBRA Assist Reprod. 2020 Jan 30;24(1):24-29. doi: 10.5935/1518-0557.20190050.
Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011 Jun;26(6):1270-83. doi: 10.1093/humrep/der037. Epub 2011 Apr 18.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Ph-CT-4301
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.