Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
10 participants
INTERVENTIONAL
2022-10-22
2026-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Low Frequency Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson's Disease
NCT03204526
Effects of Deep Brain Stimulation for the Treatment of Parkinson's Disease
NCT00358189
Deep Brain Stimulation (DBS) Frequency Effects on Gait in Parkinson's Disease(PD)
NCT00993291
Combined Theta-gamma STN Stimulation for Verbal Fluency in Parkinson Disease
NCT06509048
Cortical Network Modulation by Subthalamic Nucleus DBS
NCT04922411
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Sustained Dual Frequency, Dual Region, Stimulation
Deep brain stimulation
Patients with idiopathic Parkinson's disease who have previously been implanted with the Boston Scientific VerciseTM DBS system for at least 3 months. These patients will already be receiving high-frequency dorsal STN stimulation as part of the standard of care for PD. Once patients have provided consent and are enrolled in this study, they will receive simultaneous low-frequency stimulation of the ventral STN to examine if there are any effects on cognitive performance.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Deep brain stimulation
Patients with idiopathic Parkinson's disease who have previously been implanted with the Boston Scientific VerciseTM DBS system for at least 3 months. These patients will already be receiving high-frequency dorsal STN stimulation as part of the standard of care for PD. Once patients have provided consent and are enrolled in this study, they will receive simultaneous low-frequency stimulation of the ventral STN to examine if there are any effects on cognitive performance.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Individuals with idiopathic Parkinson's Disease who previously underwent implantation with the Boston Scientific VerciseTM DBS system
* Individuals who have been implanted with the Boston Scientific VerciseTM DBS system for at least 3 months
* Individuals diagnosed with advanced PD who had bilateral dorsal subthalamic nucleus DBS surgery, as standard of care for motor improvement, with distal contacts of the electrodes implanted into the ventral STN
Exclusion Criteria
* Individuals diagnosed with any cognitive or physical impairments that would limit their ability to participate in the cognitive testing
* Individuals who score below 15 on the Montreal Cognitive Assessment Test-Blind
* Individuals who score above 20 on the Center for Epidemiologic Studies Depression Scale
* Pregnant women (note: pregnant women are not candidates for DBS surgery), and prisoners
* Non-English speaking individuals. Cognitive tasks will only be conducted in English.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of California, Davis
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Kiarash Shahlaie, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
University of California, Davis
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
UC Davis Health
Sacramento, California, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Scangos KW, Carter CS, Gurkoff G, Zhang L, Shahlaie K. A pilot study of subthalamic theta frequency deep brain stimulation for cognitive dysfunction in Parkinson's disease. Brain Stimul. 2018 Mar-Apr;11(2):456-458. doi: 10.1016/j.brs.2017.11.014. Epub 2017 Nov 23. No abstract available.
Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science. 1990 Sep 21;249(4975):1436-8. doi: 10.1126/science.2402638.
Le Jeune F, Peron J, Grandjean D, Drapier S, Haegelen C, Garin E, Millet B, Verin M. Subthalamic nucleus stimulation affects limbic and associative circuits: a PET study. Eur J Nucl Med Mol Imaging. 2010 Aug;37(8):1512-20. doi: 10.1007/s00259-010-1436-y. Epub 2010 Mar 28.
Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW. Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol. 2007 Dec;35(7):984-99. doi: 10.1080/01926230701748305.
Volkmann J. Deep brain stimulation for the treatment of Parkinson's disease. J Clin Neurophysiol. 2004 Jan-Feb;21(1):6-17. doi: 10.1097/00004691-200401000-00003.
Frankemolle AM, Wu J, Noecker AM, Voelcker-Rehage C, Ho JC, Vitek JL, McIntyre CC, Alberts JL. Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming. Brain. 2010 Mar;133(Pt 3):746-61. doi: 10.1093/brain/awp315. Epub 2010 Jan 7.
Holz EM, Glennon M, Prendergast K, Sauseng P. Theta-gamma phase synchronization during memory matching in visual working memory. Neuroimage. 2010 Aug 1;52(1):326-35. doi: 10.1016/j.neuroimage.2010.04.003. Epub 2010 Apr 9.
Colgin LL. Mechanisms and functions of theta rhythms. Annu Rev Neurosci. 2013 Jul 8;36:295-312. doi: 10.1146/annurev-neuro-062012-170330. Epub 2013 May 29.
Lee DJ, Gurkoff GG, Izadi A, Seidl SE, Echeverri A, Melnik M, Berman RF, Ekstrom AD, Muizelaar JP, Lyeth BG, Shahlaie K. Septohippocampal Neuromodulation Improves Cognition after Traumatic Brain Injury. J Neurotrauma. 2015 Nov 15;32(22):1822-32. doi: 10.1089/neu.2014.3744. Epub 2015 Sep 2.
Izadi A, Pevzner A, Lee DJ, Ekstrom AD, Shahlaie K, Gurkoff GG. Medial septal stimulation increases seizure threshold and improves cognition in epileptic rats. Brain Stimul. 2019 May-Jun;12(3):735-742. doi: 10.1016/j.brs.2019.01.005. Epub 2019 Jan 17.
Cohen MX, Cavanagh JF. Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Front Psychol. 2011 Feb 28;2:30. doi: 10.3389/fpsyg.2011.00030. eCollection 2011.
Zavala BA, Tan H, Little S, Ashkan K, Hariz M, Foltynie T, Zrinzo L, Zaghloul KA, Brown P. Midline frontal cortex low-frequency activity drives subthalamic nucleus oscillations during conflict. J Neurosci. 2014 May 21;34(21):7322-33. doi: 10.1523/JNEUROSCI.1169-14.2014.
Zavala B, Brittain JS, Jenkinson N, Ashkan K, Foltynie T, Limousin P, Zrinzo L, Green AL, Aziz T, Zaghloul K, Brown P. Subthalamic nucleus local field potential activity during the Eriksen flanker task reveals a novel role for theta phase during conflict monitoring. J Neurosci. 2013 Sep 11;33(37):14758-66. doi: 10.1523/JNEUROSCI.1036-13.2013.
Frank MJ, Samanta J, Moustafa AA, Sherman SJ. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science. 2007 Nov 23;318(5854):1309-12. doi: 10.1126/science.1146157. Epub 2007 Oct 25.
Smarr KL, Keefer AL. Measures of depression and depressive symptoms: Beck Depression Inventory-II (BDI-II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionnaire-9 (PHQ-9). Arthritis Care Res (Hoboken). 2011 Nov;63 Suppl 11:S454-66. doi: 10.1002/acr.20556. No abstract available.
Miller WC, Anton HA, Townson AF. Measurement properties of the CESD scale among individuals with spinal cord injury. Spinal Cord. 2008 Apr;46(4):287-92. doi: 10.1038/sj.sc.3102127. Epub 2007 Oct 2.
Bjorgvinsson T, Kertz SJ, Bigda-Peyton JS, McCoy KL, Aderka IM. Psychometric properties of the CES-D-10 in a psychiatric sample. Assessment. 2013 Aug;20(4):429-36. doi: 10.1177/1073191113481998. Epub 2013 Mar 18.
Pendlebury ST, Welch SJ, Cuthbertson FC, Mariz J, Mehta Z, Rothwell PM. Telephone assessment of cognition after transient ischemic attack and stroke: modified telephone interview of cognitive status and telephone Montreal Cognitive Assessment versus face-to-face Montreal Cognitive Assessment and neuropsychological battery. Stroke. 2013 Jan;44(1):227-9. doi: 10.1161/STROKEAHA.112.673384. Epub 2012 Nov 8.
Pote I, Torkamani M, Kefalopoulou ZM, Zrinzo L, Limousin-Dowsey P, Foltynie T, Speekenbrink M, Jahanshahi M. Subthalamic nucleus deep brain stimulation induces impulsive action when patients with Parkinson's disease act under speed pressure. Exp Brain Res. 2016 Jul;234(7):1837-1848. doi: 10.1007/s00221-016-4577-9. Epub 2016 Feb 18.
Peters J, D'Esposito M. Effects of Medial Orbitofrontal Cortex Lesions on Self-Control in Intertemporal Choice. Curr Biol. 2016 Oct 10;26(19):2625-2628. doi: 10.1016/j.cub.2016.07.035. Epub 2016 Sep 1.
Seymour B, Barbe M, Dayan P, Shiner T, Dolan R, Fink GR. Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson's disease. Sci Rep. 2016 Sep 14;6:32509. doi: 10.1038/srep32509.
Ehlen F, Schoenecker T, Kuhn AA, Klostermann F. Differential effects of deep brain stimulation on verbal fluency. Brain Lang. 2014 Jul;134:23-33. doi: 10.1016/j.bandl.2014.04.002. Epub 2014 May 9.
Laxton AW, Lozano AM. Deep brain stimulation for the treatment of Alzheimer disease and dementias. World Neurosurg. 2013 Sep-Oct;80(3-4):S28.e1-8. doi: 10.1016/j.wneu.2012.06.028. Epub 2012 Jun 19.
Temperli P, Ghika J, Villemure JG, Burkhard PR, Bogousslavsky J, Vingerhoets FJ. How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology. 2003 Jan 14;60(1):78-81. doi: 10.1212/wnl.60.1.78.
Smeding HM, Speelman JD, Koning-Haanstra M, Schuurman PR, Nijssen P, van Laar T, Schmand B. Neuropsychological effects of bilateral STN stimulation in Parkinson disease: a controlled study. Neurology. 2006 Jun 27;66(12):1830-6. doi: 10.1212/01.wnl.0000234881.77830.66.
Strutt AM, Simpson R, Jankovic J, York MK. Changes in cognitive-emotional and physiological symptoms of depression following STN-DBS for the treatment of Parkinson's disease. Eur J Neurol. 2012 Jan;19(1):121-7. doi: 10.1111/j.1468-1331.2011.03447.x. Epub 2011 Jun 11.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
1633883
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.