Long-term Stability of LFP Recorded From the STN and the Effects of DBS

NCT ID: NCT02915848

Last Updated: 2021-04-27

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

10 participants

Study Classification

OBSERVATIONAL

Study Start Date

2016-09-09

Study Completion Date

2021-04-26

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Movement disorders such as Parkinson Disease, dystonia, and tremor are related to abnormalities of part of the brain known as the basal ganglia. Recently, it has been suggested that the basal ganglia works by oscillations (group of neurons cycle between activation/deactivation when stimulated) of electrical signals. A treatment that involves insertion of electrodes in the subthalamic nucleus (STN) for electrical stimulation, known as deep brain stimulation (DBS), is an established treatment for advanced Parkinson's disease. However its mechanism of action is still not completely understood. Currently, DBS utilizes an "open loop" system whereby the stimulation settings are manually adjusted depending on the patients' clinical response.

1. Determine whether the local field potential (LFP) recorded from the STN is stable over a 1.5 year period.
2. Address whether STN LFP is a suitable control signal, and how it should be used to change DBS parameters

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Study Design and Methods

Ten Parkinson's disease (PD) patients who are scheduled for bilateral STN DBS will be recruited. DBS surgery will be performed at the Toronto Western Hospital as per standard clinical care. The studies will be performed at two sites: Toronto Western Hospital and London Mobility Laboratory at Western University. Recording of STN LFP using externalized DBS leads, the effects DBS at different frequencies on PD motor symptoms will be studied at the Toronto Western Hospital. Gait studies with full body kinematic measurements, recording of LFP and effects of different stimulation frequencies will be studied at the London Mobility Laboratory (LML) at Western University.

An outline of the study timeline is provided in Table (2, 3 and 4). Standardized tasks performed are provided in Table 5.Ten PD patients with bilateral DBS in STN will be studied for six visits to each site (TWH and LML). There will also be a presurgical baseline visit to LML. Patients will first be studied 1-3 days after DBS electrode implantation and before the implantation of the pulse generator. Local field potential (LFP) will be recorded from bilateral STN DBS electrodes using externalized leads. Following internalization of the DBS leads and insertion of the pulse generator (Activa PC+S, Medtronic), patients will be studied within 7 days for a second visit. DBS programming will be performed as per usual clinical practice. Patients will then be studied at 1, 2, 6, 12 and 18 months postoperatively.

Visits at the Toronto Western Hospital (TWH)

Visit 1 (TWH V1) This visit will obtain "acute" LFP recording for comparison to chronic recordings. Patients will be studied 1-3 days after electrode insertion when the leads are externalized. This is a two day visit, with one day in the off medication state (overnight withdrawal) and one day in the on medication state in random order. For the on medication state, 125% of the levodopa equivalent of the first morning preoperative dose will be administered to increase the chance of recording levodopa-induced dyskinesia.

Stage 1: LFP will be recorded from bilateral STN DBS electrodes together with scalp EEG. Fig. 3 shows a schematic representation of the recording setup. Surface EMG and accelerometery will be used to measure the tremor frequencies and levodopa-induced dyskinesias. mUPDRS and the Rush dyskinesia rating scale (for on medication recordings) assessments will be performed. Recordings will be made at rest and while the patients perform self-paced wrist extension movements. The most prominent LFP frequencies in the θ, β and γ band oscillations at rest and during voluntary movements in both on and off medication states (individualized frequencies) as well as the electrode contact that shows the most prominent LFP oscillations will be determined for each patient. This recording will take about one hour. The data analysis will take one hour during which the patient will have a break.

Stage 2: This will involve stimulation. The DBS leads will be connected to an external stimulator and a "filter DBS" device to record LFP during DBS. Four DBS conditions will be studied in random order:

1\) high frequency (185 Hz), 2) the individualized γ frequency that show maximum peak at rest (γ rest, determined from stage 1), 3) the individualized γ frequency that show maximum increase with voluntary movements (γ movement, determined from stage 1), and 4) no stimulation. The contact will be selected based on location within the STN from postoperative MRI using methods published by our group and maximum changes in the θ and β bands with voluntary movements (Stage 1). The selected DBS contact will be the cathode (-ve) and anode (+ve) will be a surface electrode placed on the chest wall (similar to contact -ve, case +ve commonly used in therapeutic DBS). Pulse width will be set at100 μs and the current will be the highest (maximum 5 mA) without inducing adverse effect. LFP will be recorded from the electrode contacts adjacent to the one used for DBS using a bipolar montage to allow for maximum cancellation of stimulus artifacts. For example, if contact 2 is used for DBS, LFP will be recorded from contacts 1 and 3. For each condition, 15 min of DBS while resting will be followed by mUPDRS assessment while DBS is maintained. Patients will be video recorded to allow subsequent video scoring of mUPDRS and the Rush dyskinesia rating scale by blinded raters. DBS for the right and left STN will be studied in random order, with one side in the morning and one side in the afternoon. Investigators have performed more complex stimulation protocols in PD patients with STN DBS.

The second day of study will occur the next day. The procedure will be the same as Day 1 except that the medication status (on or off medication) will alternate with Day 1 in random order.

Visit 2 (TWH-V2) The purpose of this visit is to obtain early LFP recording from the Activa PC+S device before DBS programming begins. This visit will be conducted within 4 weeks of internalization of the DBS leads and insertion of the pulse generator (Activa PC+S), but before the pulse generator is turned on for programming. The visit will be conducted over two days, one day in the off medication state (overnight withdrawal) and one day in the on medication state in random order as in Visit 1. The procedure is identical for Visit 1 with recording of LFP at rest and during a self-paced wrist extension task, followed by testing of 4 different stimulation conditions. However, LFP will be recorded from the Activa PC+S device using the real-time uplink mode to provide continuous recording rather than from externalized leads. Since the device can only record LFP from one pair of contacts from each electrode (right and left) at a time, for recordings in the resting state to examine the difference between on and off medications, investigators will use the "montage sweep" mode that will record alternately from all six possible combinations of bipolar contacts (0-1, 1-2, 2-3, 0-2, 0-3, 1-3) for each electrode. For the wrist extension movements, we will record from the bipolar contact pair that produced the greatest change in γ oscillations with dopaminergic medications and voluntary movements based on the results of Visit 1. In addition, we will record from the adjacent contact pair. For example, if contact 1-2 was found to produce the maximum γ peak, contacts 1-2 as well as contacts 0-1 and 2-3 will be studied. Each pair of electrode contacts will be studied in separate runs. Following the LFP recording (stage 1), the individual γ frequency peaks will be established. Stage 2 will study the effects of DBS at high frequency, γ rest, γ movement and no stimulation assessed in random order with recording of STN LFP during stimulation as in Visit 1. The same contact used for DBS in Visit 1 will be used with monopolar montage (contact -ve, case +ve). LFP with be recorded from the adjacent contacts with bipolar montage as described in Visit 1 but the implanted Activa PC+S device will be used for LFP recording

Visits 3- 6 (TWH-V3, V4, V5 and V6) After Visit 2, DBS programming will be performed as per usual clinical practice and takes about 2-4 weeks to complete. Patients will then be studied at 2, 6, 12, and 18 months after surgery. The assessment procedure will be identical to that for Visit 2 except that the "high" frequency stimulation setting will be the setting normally used by the patient for clinical benefit (130-185 Hz) instead of 185 Hz.

Visits at London Mobility Laboratory (Western University) Visit 1 will occur before surgery to obtain baseline gait and kinematic measurements data in the on and off medication states. For visits 2, 3 and 7, the TWH visits will occur 1-5 days before the London Mobility Laboratory visits. The γ frequency stimulation to be used in the London Mobility Laboratory visits will be the "γ movement" frequency determined from the corresponding TWH visit.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Parkinson's Disease

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

PC+S group

PC+S group gets Medtronic, Activa PC+S DBS device,

PC+S group

Intervention Type DEVICE

PC+S group: participants in the study will also receive a specific stimulation device (Activa PC+S, Medtronic) that is capable of recording the local field potentials (LFP). Approximately 10 participants are expected to take part in this study at UHN.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

PC+S group

PC+S group: participants in the study will also receive a specific stimulation device (Activa PC+S, Medtronic) that is capable of recording the local field potentials (LFP). Approximately 10 participants are expected to take part in this study at UHN.

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. PD Patients scheduled to undergo bilateral STN DBS surgery.
2. No previous brain surgery or other neurological disorders
3. No unstable medical conditions
4. Able to provide informed consent and comply with study protocol

Exclusion Criteria

1\. previous brain surgery or other neurological disorders unstable medical conditions
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Medtronic

INDUSTRY

Sponsor Role collaborator

University Health Network, Toronto

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Robert Chen

Senior Scientist and Professor of Medicine (Neurology)

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Robert Chen, FRCPC

Role: PRINCIPAL_INVESTIGATOR

University Health Network, Toronto

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Toronto Western Hospital

Toronto, Ontario, Canada

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Canada

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

UHNToronto: 12-5452-B

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Deep Brain Stimulation and Parkinson's Disease
NCT02795663 COMPLETED EARLY_PHASE1