Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
15 participants
INTERVENTIONAL
2020-11-04
2024-01-10
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
During intense Military specific tasks, compared to the user-adjusted socket and the static socket, the microprocessor-adjusting socket will:
1. minimize translational movement between the residual limb and the prosthetic socket;
2. maintain residual limb fluid volume; and
3. maximize prosthetic socket comfort.
When using the microprocessor-adjusting socket compared to the user-adjusted socket and the static socket, participants will:
1. cover the greatest distance during a simulated combat patrol;
2. perform all high intensity Military specific tasks with less pain;
3. perform a simulated combat patrol nearer to uninjured levels of performance; and
4. rank usability at a level similar to the static socket.
The specific aims are to:
1. Fabricate microprocessor-adjusting sockets specific for Service members and Veterans with goals of returning to high-level physical activities
2. Evaluate Military task performance in Service members with transtibial amputation using "Readiness Assessments," while wearing three socket configurations: microprocessor-adjusting, user-adjusting, and static
* Simulated combat patrol in a Virtual Realty Environment
* Military version of a Functional Capacity Evaluation
3. Characterize user preference and usability of different socket configurations
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Assessment of Socket Shapes Made by Central Fabrication Facilities
NCT01245504
Clinical Evaluation of Direct Manufactured Prosthetic Sockets
NCT01155024
Quantitatively-informed Socket Design Process
NCT05041998
Evaluating User Satisfaction and Feasibility of a Remote Model for 3d Scanned and Printed Transtibial Prosthetic Sockets
NCT06361966
Influence of Socket Volume on Prosthesis Performance
NCT02124915
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Participants will come to the Center For the Intrepid (CFI) for up to 10 visits to complete a pre-monitoring session (assess residual limb health and gather information regarding limb fluid volume); socket fitting session(s) (fitting of three sockets- static socket, a user-adjusted socket, and microprocessor-adjusting socket); and for military readiness assessments for each of the three socket conditions.
Data across the three socket conditions (static socket, user adjusted socket, and Microprocessor-adjusting sockets) will be tested for normality. When it normality can be assumed, a single factor repeated measures ANOVA will test between socket conditions. Mauchly's Test of Sphericity was be used to test if the variance is significantly different across all of the conditions. If the sphericity condition is violated, a Greenhouse-Geisser adjustment will be applied. When a significance effect is detected, pairwise comparisons using a Tukey post-hoc will be performed to determine which conditions are significantly different. When normality cannot be assumed, a Kruskal-Wallis H test will be used. When a significance effect is detected, pairwise comparisons using a Mann-Whitney post-hoc while adjusting the p-value for multiple comparisons will be performed to determine which conditions are significantly different. Statistical significance will be set to p\<0.05
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Adaptable Prosthetic Socket
Using measurements of limb-socket displacements from sensors embedded within the socket wall, adaptable sockets make small adjustments to socket size so as to maintain consistent displacements while prosthesis users are active. They do not require the user to stop activity or to touch or modify the prosthesis, and they do not distract users from their objectives.
Static socket
For the static socket configuration, both the microprocessor control and user control are disabled, and the panels are positioned in their flush configuration to create the user's as-prescribed socket shape.
User adjusted socket
Sockets are configured for user control by disabling automated control and enabling push buttons on the side of the socket to adjust socket size. Each button push effects a socket size change of approximately 0.3% volume. An upper button effects a socket size increase, and a lower button a socket size decrease. The buttons are countersunk so reduce risk of accidental pushes, and they do not function unless the user is stationary. An additional button push will not be executed until motor motion from the prior push has been completed. If a button is continuously held then the motor will continue moving until the button is released. Limits are set on cable length to ensure that sockets sizes threatening to the user's residual limb (too tight) are avoided. The push buttons effect inner-loop control that operates completely within the mechanism, achieving high-resolution adjustment of cable length with minimal error.
Microprocessor-adjusting sockets
A strategy for automatically controlling the size of the socket during walking to compensate for unknown changes in limb volume will be used. The controller is essentially a regulator that continuously measures socket "fit," and adjusts the socket to maintain a prescribed reference set point. Because the fit is automatically sustained, the prosthesis user is unaware of its operation.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Static socket
For the static socket configuration, both the microprocessor control and user control are disabled, and the panels are positioned in their flush configuration to create the user's as-prescribed socket shape.
User adjusted socket
Sockets are configured for user control by disabling automated control and enabling push buttons on the side of the socket to adjust socket size. Each button push effects a socket size change of approximately 0.3% volume. An upper button effects a socket size increase, and a lower button a socket size decrease. The buttons are countersunk so reduce risk of accidental pushes, and they do not function unless the user is stationary. An additional button push will not be executed until motor motion from the prior push has been completed. If a button is continuously held then the motor will continue moving until the button is released. Limits are set on cable length to ensure that sockets sizes threatening to the user's residual limb (too tight) are avoided. The push buttons effect inner-loop control that operates completely within the mechanism, achieving high-resolution adjustment of cable length with minimal error.
Microprocessor-adjusting sockets
A strategy for automatically controlling the size of the socket during walking to compensate for unknown changes in limb volume will be used. The controller is essentially a regulator that continuously measures socket "fit," and adjusts the socket to maintain a prescribed reference set point. Because the fit is automatically sustained, the prosthesis user is unaware of its operation.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Authorized to receive care at the Center for the Intrepid
* Unilateral or bilateral transtibial amputation
* Have experience performing military relevant tasks (e.g., Active duty Service Member or Veteran)
* Current prosthesis user
* Ability to comply with instructions associated with functional testing
* Able to provide written informed consent
Exclusion Criteria
* History of medical or psychological disease that would preclude safe gait, load carriage, physical, or cognitive functional training or testing within a virtual reality environment as determined by the provider screening the subject (i.e. moderate/severe traumatic brain injury, stroke, renal failure, cardiac or pulmonary problems disease, severe anemia, and other medical conditions)
* Any injury sustained to the upper extremity which would preclude safe physical performance testing
* Self-reported Blindness
* Self-reported Pregnancy
* Self-reported Active infection
* Weight above 250 lbs (114 kg)
* Residual limb length shorter than 9cm as this is the minimum distance necessary to attach the bio-impendence sensors
* Score greater than 20% on the Modified Oswestry Low Back Pain Questionnaire as this will indicate greater than minimal disability due to low back pain.
18 Years
55 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Washington
OTHER
Brooke Army Medical Center
FED
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Dr. Walter Lee Childers
Principle Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Walter L Childers, PhD
Role: PRINCIPAL_INVESTIGATOR
Extremity Trauma and Amputation Center of Excellence (EACE)
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Brooke Army Medical Center, Center for the Intrepid
Fort Sam Houston, Texas, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Sanders JE, Severance MR, Allyn KJ. Computer-socket manufacturing error: how much before it is clinically apparent? J Rehabil Res Dev. 2012;49(4):567-82. doi: 10.1682/jrrd.2011.05.0097.
Schnell MD BW. Management of pain in the amputee. . In: JH Bowker JM, ed. Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles. 2nd ed. Chicago: Mosby-Year Book; 1982:689-706.
Henrikson KM, Weathersby EJ, Larsen BG, Cagle JC, McLean JB, Sanders JE. An Inductive Sensing System to Measure In-Socket Residual Limb Displacements for People Using Lower-Limb Prostheses. Sensors (Basel). 2018 Nov 9;18(11):3840. doi: 10.3390/s18113840.
Sanders JE, Garbini JL, McLean JB, Hinrichs P, Predmore TJ, Brzostowski JT, Redd CB, Cagle JC. A motor-driven adjustable prosthetic socket operated using a mobile phone app: A technical note. Med Eng Phys. 2019 Jun;68:94-100. doi: 10.1016/j.medengphy.2019.04.003. Epub 2019 Apr 23.
Sanders JE, Zachariah SG, Jacobsen AK, Fergason JR. Changes in interface pressures and shear stresses over time on trans-tibial amputee subjects ambulating with prosthetic limbs: comparison of diurnal and six-month differences. J Biomech. 2005 Aug;38(8):1566-73. doi: 10.1016/j.jbiomech.2004.08.008.
Larsen BG, McLean JB, Redd CB, Brzostowski JT, Allyn KJ, Sanders JE. How do socket size adjustments during ambulation affect residual limb fluid volume? Case study results. JPO: Journal of Prosthetics and Orthotics. 2019;31(1):58-66.
McLean JB, Redd CB, Larsen BG, Garbini JL, Brzostowski JT, Hafner BJ, Sanders JE. Socket size adjustments in people with transtibial amputation: Effects on residual limb fluid volume and limb-socket distance. Clin Biomech (Bristol). 2019 Mar;63:161-171. doi: 10.1016/j.clinbiomech.2019.02.022. Epub 2019 Mar 2.
Brzostowski JT, Larsen BG, Youngblood RT, Ciol MA, Hafner BJ, Gurrey CJ, McLean JB, Allyn KJ, Sanders JE. Adjustable sockets may improve residual limb fluid volume retention in transtibial prosthesis users. Prosthet Orthot Int. 2019 Jun;43(3):250-256. doi: 10.1177/0309364618820140. Epub 2019 Jan 10.
Fernie GR, Holliday PJ. Volume fluctuations in the residual limbs of lower limb amputees. Arch Phys Med Rehabil. 1982 Apr;63(4):162-5.
Larsen BG, Allyn KJ, Ciol MA, Sanders JE. Performance of a sensor to monitor socket fit: Comparison with practitioner clinical assessment. JPO: Journal of Prosthetics and Orthotics. 2019.
Larsen BG, McLean JB, Allyn KJ, Brzostowski JT, Garbini JL, Sanders JE. How do transtibial residual limbs adjust to intermittent incremental socket volume changes? Prosthet Orthot Int. 2019 Oct;43(5):528-539. doi: 10.1177/0309364619864771. Epub 2019 Jul 24.
Collinger J, Grindle G, Heiner C, et al. Roadmap for future amputee care research. Care of the Combat Amputee. Washington, DC: Borden Institute, Walter Reed Army Medical Center; 2009.
Berke GM, Fergason J, Milani JR, Hattingh J, McDowell M, Nguyen V, Reiber GE. Comparison of satisfaction with current prosthetic care in veterans and servicemembers from Vietnam and OIF/OEF conflicts with major traumatic limb loss. J Rehabil Res Dev. 2010;47(4):361-71. doi: 10.1682/jrrd.2009.12.0193.
Reiber GE, McFarland LV, Hubbard S, Maynard C, Blough DK, Gambel JM, Smith DG. Servicemembers and veterans with major traumatic limb loss from Vietnam war and OIF/OEF conflicts: survey methods, participants, and summary findings. J Rehabil Res Dev. 2010;47(4):275-97. doi: 10.1682/jrrd.2010.01.0009.
Force BIT. Dismounted Complex Blast Injury. Paper presented at: Report of the Army Dismounted Complex Blast Injury Task Force2011.
Sanders JE, Harrison DS, Allyn KJ, Myers TR, Ciol MA, Tsai EC. How do sock ply changes affect residual-limb fluid volume in people with transtibial amputation? J Rehabil Res Dev. 2012;49(2):241-56. doi: 10.1682/jrrd.2011.02.0022.
Hinrichs P, Cagle JC, Sanders JE. A portable bioimpedance instrument for monitoring residual limb fluid volume in people with transtibial limb loss: A technical note. Med Eng Phys. 2019 Jun;68:101-107. doi: 10.1016/j.medengphy.2019.04.002. Epub 2019 Apr 22.
Sanders JE, Moehring MA, Rothlisberger TM, Phillips RH, Hartley T, Dietrich CR, Redd CB, Gardner DW, Cagle JC. A Bioimpedance Analysis Platform for Amputee Residual Limb Assessment. IEEE Trans Biomed Eng. 2016 Aug;63(8):1760-70. doi: 10.1109/TBME.2015.2502060. Epub 2015 Nov 19.
De Lorenzo A, Andreoli A, Matthie J, Withers P. Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol (1985). 1997 May;82(5):1542-58. doi: 10.1152/jappl.1997.82.5.1542.
Fenech M, Jaffrin MY. Extracellular and intracellular volume variations during postural change measured by segmental and wrist-ankle bioimpedance spectroscopy. IEEE Trans Biomed Eng. 2004 Jan;51(1):166-75. doi: 10.1109/TBME.2003.820338.
Hanai T. Electrical properties of emulsions in emulsion science. Sherman PH. 1968.
Sanders JE, Cagle JC, Allyn KJ, Harrison DS, Ciol MA. How do walking, standing, and resting influence transtibial amputee residual limb fluid volume? J Rehabil Res Dev. 2014;51(2):201-12. doi: 10.1682/JRRD.2013.04.0085.
Sanders JE, Cagle JC, Harrison DS, Myers TR, Allyn KJ. How does adding and removing liquid from socket bladders affect residual-limb fluid volume? J Rehabil Res Dev. 2013;50(6):845-60. doi: 10.1682/JRRD.2012.06.0121.
Sanders JE, Allyn KJ, Harrison DS, Myers TR, Ciol MA, Tsai EC. Preliminary investigation of residual-limb fluid volume changes within one day. J Rehabil Res Dev. 2012;49(10):1467-78. doi: 10.1682/jrrd.2011.12.0236.
Sanders JE, Harrison DS, Allyn KJ, Myers TR. Clinical utility of in-socket residual limb volume change measurement: case study results. Prosthet Orthot Int. 2009 Dec;33(4):378-90. doi: 10.3109/03093640903214067.
Sanders JE, Harrison DS, Cagle JC, Myers TR, Ciol MA, Allyn KJ. Post-doffing residual limb fluid volume change in people with trans-tibial amputation. Prosthet Orthot Int. 2012 Dec;36(4):443-9. doi: 10.1177/0309364612444752. Epub 2012 May 15.
Sanders JE, Harrison DS, Myers TR, Allyn KJ. Effects of elevated vacuum on in-socket residual limb fluid volume: case study results using bioimpedance analysis. J Rehabil Res Dev. 2011;48(10):1231-48. doi: 10.1682/jrrd.2010.11.0219.
Sanders JE, Hartley TL, Phillips RH, Ciol MA, Hafner BJ, Allyn KJ, Harrison DS. Does temporary socket removal affect residual limb fluid volume of trans-tibial amputees? Prosthet Orthot Int. 2016 Jun;40(3):320-8. doi: 10.1177/0309364614568413. Epub 2015 Feb 20.
Sanders JE, Redd CB, Cagle JC, Hafner BJ, Gardner D, Allyn KJ, Harrison DS, Ciol MA. Preliminary evaluation of a novel bladder-liner for facilitating residual limb fluid volume recovery without doffing. J Rehabil Res Dev. 2016;53(6):1107-1120. doi: 10.1682/JRRD.2014.12.0316.
Sanders JE, Youngblood RT, Hafner BJ, Ciol MA, Allyn KJ, Gardner D, Cagle JC, Redd CB, Dietrich CR. Residual limb fluid volume change and volume accommodation: Relationships to activity and self-report outcomes in people with trans-tibial amputation. Prosthet Orthot Int. 2018 Aug;42(4):415-427. doi: 10.1177/0309364617752983. Epub 2018 Feb 5.
Youngblood RT, Hafner BJ, Allyn KJ, Cagle JC, Hinrichs P, Redd C, Vamos AC, Ciol MA, Bean N, Sanders JE. Effects of activity intensity, time, and intermittent doffing on daily limb fluid volume change in people with transtibial amputation. Prosthet Orthot Int. 2019 Feb;43(1):28-38. doi: 10.1177/0309364618785729. Epub 2018 Jul 16.
Swanson EC, McLean JB, Allyn KJ, Redd CB, Sanders JE. Instrumented socket inserts for sensing interaction at the limb-socket interface. Med Eng Phys. 2018 Jan;51:111-118. doi: 10.1016/j.medengphy.2017.11.006. Epub 2017 Dec 8.
Cancio JM, Oliver RA, Yancosek KE. Functional Capacity Evaluation-Military: Program Description and Case Series. Mil Med. 2017 Jan;182(1):e1658-e1664. doi: 10.7205/MILMED-D-16-00072.
Gailey R, Kristal A, Lucarevic J, Harris S, Applegate B, Gaunaurd I. The development and internal consistency of the comprehensive lower limb amputee socket survey in active lower limb amputees. Prosthet Orthot Int. 2019 Feb;43(1):80-87. doi: 10.1177/0309364618791620. Epub 2018 Aug 10.
Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology: Toward a unified view. MIS quarterly. 2003:425-478.
Keen SM, Kutter CJ, Niles BL, Krinsley KE. Psychometric properties of PTSD Checklist in sample of male veterans. J Rehabil Res Dev. 2008;45(3):465-74. doi: 10.1682/jrrd.2007.09.0138.
Lovell MR, Iverson GL, Collins MW, Podell K, Johnston KM, Pardini D, Pardini J, Norwig J, Maroon JC. Measurement of symptoms following sports-related concussion: reliability and normative data for the post-concussion scale. Appl Neuropsychol. 2006;13(3):166-74. doi: 10.1207/s15324826an1303_4.
Iverson GL, Gaetz M, Lovell MR, Collins MW. Relation between subjective fogginess and neuropsychological testing following concussion. J Int Neuropsychol Soc. 2004 Oct;10(6):904-6. doi: 10.1017/s1355617704106139.
Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81.
Hanspal RS, Fisher K, Nieveen R. Prosthetic socket fit comfort score. Disabil Rehabil. 2003 Nov 18;25(22):1278-80. doi: 10.1080/09638280310001603983.
Cook KF, Dunn W, Griffith JW, Morrison MT, Tanquary J, Sabata D, Victorson D, Carey LM, Macdermid JC, Dudgeon BJ, Gershon RC. Pain assessment using the NIH Toolbox. Neurology. 2013 Mar 12;80(11 Suppl 3):S49-53. doi: 10.1212/WNL.0b013e3182872e80.
Rabago CA, Sheehan RC, Schmidtbauer KA, Vernon MC, Wilken JM. A novel assessment for Readiness Evaluation during Simulated Dismounted Operations: A reliability study. PLoS One. 2019 Dec 30;14(12):e0226386. doi: 10.1371/journal.pone.0226386. eCollection 2019.
Hill J, Timmis A. Exercise tolerance testing. BMJ. 2002 May 4;324(7345):1084-7. doi: 10.1136/bmj.324.7345.1084. No abstract available.
Hart SG, Staveland LE. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In: Advances in psychology. Vol 52. Elsevier; 1988:139-183.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
BAMC C.2020.007
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.