Post Covid-19 Cardiopulmonary and Immunological Changes
NCT ID: NCT04388436
Last Updated: 2020-05-19
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
100 participants
OBSERVATIONAL
2020-05-11
2021-10-10
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Comparison of General Characteristics of Patients Diagnosed COVID-19 (Coronavirus )Positive Followed In Service
NCT05092568
Post-coronavirus Disease-2019 Fatigue
NCT04851561
Predictors of COVID-19 Infection and Disease Progression
NCT04484597
COVID Cohort Study
NCT04393155
Estimation of Dynamics of Humoral and Cellular Immunity in COVID-19 Patients
NCT04649840
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
COVID-19 (Coronavirus Disease-2019) is a public health emergency of international concern. Radiological, lung function changes were reported in different studies of pulmonary viral infection.
After a patient has recovered from severe acute respiratory syndrome (SARS), CT shows transient interlobular septal thickening and reticulation over a course of several weeks to months. The reticulation appears after the 2nd week and peaks around the 4th week. One-third of patients with persistent respiratory symptoms will have imaging findings of fibrosis, including interlobular and intralobular reticulation, traction bronchiectasis, and, rarely, honeycombing. Areas of air trapping, caused by damage to ciliated respiratory epithelium, have been reported in 92% of patients who have recovered from pneumonia and are less likely to resolve completely. Likewise, in patients with MERS, although the majority fully recover, 33% show evidence of lung fibrosis on follow-up imaging. These patients were commonly older, had prolonged ICU admission, and had greater lung involvement in the acute phase of the disease.
CT was performed 1 year after MERS-CoV infection in 65 (89%) patients. Radiological sequelae were revealed in 25% (4/16), 63% (19/30), and 95% (18/19) of patients in the no, mild, and severe pneumonia groups, respectively (P \< 0.001). The median radiological sequelae score was 0, 1, and 3 in the no, mild, and severe pneumonia groups, respectively, and the radiological sequelae scores were significantly correlated with the severity of pneumonia (P \< 0.001). The finding that more severe MERS pneumonia resulted in more impaired lung function strongly suggests that pulmonary sequelae can remain at least 1 year after MERS-CoV pneumonia, which is also supported by the correlation of radiological sequela correlated with the severity of MERS pneumonia.
A previous study showed that 24% of SARS survivors have impaired DLCO and 5% reduced lung volume at 12 months.
A follow-up study of 55 patients with SARS at 24 months revealed that 10 (18.2%), 9 (16.4%), 6 (10.9%) and 29 (52.7%) subjects had FEV1, FVC, TLC and DL(CO) \< 80% of predicted values, respectively. The mean (SD) 6MWD increased significantly from 439.0 (89.1) m at 3 months to 460.1 (102.8) m at 6 months (P 0.016) and became steady after 6 months. However, 6MWD and 36 item Short Form General Health Survey scores were lower than the normal population throughout the study.
Pulmonary function defects were detected in half of the recovered severe acute respiratory syndrome patients 3 months after hospital discharge, but the impairment was mild in almost all cases. Many patients had reduced exercise capacity that cannot be accounted for by impairment of pulmonary function.
The deleterious SARS-CoV-2 infection myocardial effects could also be perpetuated by the prompt and severe downregulation of myocardial and pulmonary ACE2 pathways, thereby mediating myocardial inflammation, lung edema, and acute respiratory failure. ACE2 is widely expressed not only in the lungs but also in the cardiovascular system and, therefore, ACE2-related signalling pathways might even have a role in heart injury. Other proposed mechanisms of myocardial injury include a cytokine storm triggered by an imbalanced response by type 1 and 2 T-helper cells strong interferon-mediated immunopathological events and respiratory dysfunction and hypoxemia caused by COVID-19, resulting in damage to myocardial cells.
Infection due to viral, bacterial, or fungal pathogens initiates complex systemic inflammatory responses as part of innate immunity. Activation of host defense systems results in subsequent activation of coagulation and thrombin generation as critical communication components among humoral and cellular amplification pathways, a term called thromboinflammation or immunothrombosis.
Several serological immunoassays have been developed for the detection of SARS-CoV-2 viral proteins and antibodies in the serum or plasma. The most widely used biomarkers for the detection of SARS-CoV-2 infection in commercial immunoassays are IgM and IgG antibodies produced in suspects from the 2nd week of viral infection. IgM can be detected in the patient samples from 10 to 30 days after SARS-CoV-2 infection, while IgG can be detected from 20 days onwards. The IgM response occurs earlier than that of IgG, but it then decreases and disappears. On the other hand, IgG can persist after infection for a long time and may have a protective role.
A study reported that ELISA detected SARS-CoV-2 IgM or IgG in 34/40 individuals with an RT-PCR-confirmed diagnosis of SARS-CoV-2 infection (sensitivity 85%, 95%CI 70-94%), vs 0/50 pre-pandemic controls (specificity 100% \[95%CI 93-100%\]). IgG levels were detected in 31/31 RT-PCR positive individuals tested ≥10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but remained above the detection threshold. Point estimates for the sensitivity of lateral flow immunoassay (LFIA) devices ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 93-100% respectively.
• Timeliness, innovative nature and relevance of the project
AS COVID -19 is an emerging pandemic since late 2019, follow up studies of its sequelae are still lacking. The aim is to track any consequences regarding radiological findings, functional impairment of respiratory system and immunological response to COVID -19. This may have an economic and social burden if lung functions are deteriorating post infection. Also, development of an effective vaccination is an issue of great interest all over the world. Existence and duration of persistence of protective antibodies may help prediction of vaccination frequency and better understanding of the nature of the virus.
• Research design and methodologies:
One hundred RT- PCR positive COVID-19 patients will be enrolled.
The following data will be collected:
* Medical history: age, sex, occupation, comorbidities, previous treatment, …
* Clinical classification of COVID-19 infection:
1- Mild: clinical symptoms without pneumonia 2- Moderate: clinical symptoms with pneumonia 3- Severe: who meet any of the following: respiratory rate 30 breath\\minute, oxygen saturation less than 93% at rest and patient with more than 50%lesion progression within 24 to 48h in the lung
* Radiological data:
Pulmonary CT pattern of COVID-19 using Philips Ingenuity core 128 the Netherlands:
1. COVID-19 pneumonia, Type L:
Only ground-glass densities are present on CT scan, primarily located subpleural and along the lung fissures. Consequently, lung weight is only moderately increased.
2. COVID-19 pneumonia, Type H:
The increased amount of non-aerated tissue Follow up CT at 3, 6 and 12 months intervals
Echocardiography using Sonoscape A5 portable echocardigraph:
3, 6 and 12 months intervals after clinical improvement
• Pulmonary function test: Spirometry: measurement of lung volumes and capacities (forced expiratory volume in first second FEV1, forced vital capacity FVC, FEV1\\FVC and FEF25\\75) Diffusion capacity of the lung to carbon monoxide (DLCO) at 3, 6 and 12 months intervals after clinical improvement
• Immunological data: Detection of COVID-19 IgG and IgM antibody in patient's plasma During infection and at 3, 6 and 12 months intervals after clinical improvement by BIOCREDIT COVID-19 IgG+ IgM Duo (One Step SARS-CoV-2 IgG and IgM Antibody Rapid Test) RapiGEN.INC.
BIOCREDIT COVID-19 IgG+ IgM Duo is a lateral flow immunochromatographic assay for qualitative detection of IgG and IgM specific to SARS-COV-2 virus in human serum, plasma and whole blood. Antihuman IgG and IgM conjugated with colloidal gold particles will react specifically with the SARS-COV-2 IgG and IgM antibodies in patient's serum, plasma and whole blood. The colloidal gold conjugated anti-human IgG \& IgM and SARS-COV-2 specific IgG \& IgM forms antibody-antibody-gold particle complex then it moves to pre-coated SARS-COV-2 NP and Spike protein recombinant antigens on the membrane. The reaction forms antigen-antibody-antibody-gold particle complex then they show as color band at T- line area. The control line (C) is used for procedural control and should always appear if the test is performed correctly.
• Detailed time plan
On discharge from hospital 1 month post discharge 3 months post discharge 6 months post discharge 12 months post discharge
CT angiographychest 1,3,6,12 months Lateral flow immunoassay 1,3,6,12 months Spirometry 1,3,6,12 months DLCO 1,3,6,12 months Echo 1,3,6,12 months
• Quality of the research team
Research team members are quick thinker, eager to know more and more, have analytical mind, show Commitment, cooperative and have excellent written and verbal communication skills. Also, the team is well qualified and has several national and international publications.
* Independent thinking and major research achievements This project will help us to know the sequalae of post infection by covid 19, regarding the immunological impact and the persistence of antibodies in the blood of survivors, persistent symptom, pulmonary remote effects in these patients.
* Impact
This study is set out to detect functional impairment in COVID-19 survivors which may have economic and social impact. Also, investigator will assess possible protective immune response following infection which may affect vaccination schedule
•
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Mansoura University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Tamer A Elhadidy, MD
Role: PRINCIPAL_INVESTIGATOR
assistant professor
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Mansoura faculty of medicine
Al Mansurah, Dakahlia Governorate, Egypt
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, Lit LC, Hui DS, Chan MH, Chung SS, Sung JJ. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004 Apr;136(1):95-103. doi: 10.1111/j.1365-2249.2004.02415.x.
Vashist SK. In Vitro Diagnostic Assays for COVID-19: Recent Advances and Emerging Trends. Diagnostics (Basel). 2020 Apr 5;10(4):202. doi: 10.3390/diagnostics10040202.
Park WB, Jun KI, Kim G, Choi JP, Rhee JY, Cheon S, Lee CH, Park JS, Kim Y, Joh JS, Chin BS, Choe PG, Bang JH, Park SW, Kim NJ, Lim DG, Kim YS, Oh MD, Shin HS. Correlation between Pneumonia Severity and Pulmonary Complications in Middle East Respiratory Syndrome. J Korean Med Sci. 2018 May 10;33(24):e169. doi: 10.3346/jkms.2018.33.e169. eCollection 2018 Jun 11.
Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, Butany J. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009 Jul;39(7):618-25. doi: 10.1111/j.1365-2362.2009.02153.x. Epub 2009 May 6.
Ooi GC, Khong PL, Muller NL, Yiu WC, Zhou LJ, Ho JC, Lam B, Nicolaou S, Tsang KW. Severe acute respiratory syndrome: temporal lung changes at thin-section CT in 30 patients. Radiology. 2004 Mar;230(3):836-44. doi: 10.1148/radiol.2303030853.
Ong KC, Ng AW, Lee LS, Kaw G, Kwek SK, Leow MK, Earnest A. 1-year pulmonary function and health status in survivors of severe acute respiratory syndrome. Chest. 2005 Sep;128(3):1393-400. doi: 10.1378/chest.128.3.1393.
Ngai JC, Ko FW, Ng SS, To KW, Tong M, Hui DS. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology. 2010 Apr;15(3):543-50. doi: 10.1111/j.1440-1843.2010.01720.x. Epub 2010 Mar 19.
Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019 Feb 28;133(9):906-918. doi: 10.1182/blood-2018-11-882993. Epub 2019 Jan 14.
Ketai L, Paul NS, Wong KT. Radiology of severe acute respiratory syndrome (SARS): the emerging pathologic-radiologic correlates of an emerging disease. J Thorac Imaging. 2006 Nov;21(4):276-83. doi: 10.1097/01.rti.0000213581.14225.f1.
Hui DS, Wong KT, Ko FW, Tam LS, Chan DP, Woo J, Sung JJ. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest. 2005 Oct;128(4):2247-61. doi: 10.1378/chest.128.4.2247.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24.
Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013 Jan;13(1):34-45. doi: 10.1038/nri3345. Epub 2012 Dec 7.
Das KM, Lee EY, Singh R, Enani MA, Al Dossari K, Van Gorkom K, Larsson SG, Langer RD. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging. 2017 Jul-Sep;27(3):342-349. doi: 10.4103/ijri.IJRI_469_16.
Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP, Kelvin DJ. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 2008 Apr;133(1):13-9. doi: 10.1016/j.virusres.2007.02.014. Epub 2007 Mar 19.
Related Links
Access external resources that provide additional context or updates about the study.
Viral kinetics and antibody responses in patients with COVID-19
Antibody testing for COVID-19: A report from the National COVID Scientific Advisory Panel
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
20.05.67
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.