Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
WITHDRAWN
NA
INTERVENTIONAL
2023-01-31
2029-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Alternative of Treatment in Obesity Hypoventilation Syndrome
NCT01405976
Pilot Study of High-flow Humidified Nasal Oxygen During Breaks From Noninvasive Ventilation
NCT01925534
Cost Effectiveness of Outpatient Set-up of Automated NIV in Obese Patients With Chronic Respiratory Failure
NCT02342899
The Obesity-hypoventilation Syndrome Study of Clinical Characteristics and Predictive Factors of Response to Treatment
NCT00938977
Target Volume in Noninvasive Positive Pressure Ventilation
NCT01748656
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Methods: Prospective, multinational, randomized open-label controlled trial with two parallel arms: 1,110 hospitalized patients with newly diagnosed OHS with acute-on-chronic hypercapnic respiratory failure treated with invasive or noninvasive mechanical ventilation who survive hospitalization and available for hospital discharge will be randomized to either automatically adjusted NIV (555 patients) or "life style modifications" (555 patients) for three months. Subsequently, both automatically adjusted NIV and "life style modifications" arms will be re-randomized to polysomnographically adjusted CPAP or to polysomnographically adjusted NIV groups to complete 36 months of follow up. The first phase of the proposal is a superiority study and the second phase is a non-inferiority study. The primary outcome and its components will be analyzed by a mixed-effects model with negative binomial. A mixed-effects Cox model will be used for hospital resource utilization, new cardiovascular events and overall survival. Other secondary outcomes such as repeated measures derived from the arterial blood gases (i.e. PaCO2, PaO2, pH, calculated bicarbonate), blood pressure, health-related quality of life tests and Epworth Sleepiness Scale during the follow-up will be analyzed by a linear mixed-effects model.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Life style modification
"Lifestyle modifications" group (Control) will consist of a 1,000-calorie/day diet and to maintain proper sleep hygiene and habits (avoid supine decubitus position, maintain regular sleep habits and exercise, not take sedatives, stimulants, alcohol, tobacco or heavy meals within four hours before bedtime). Oxygen therapy can be prescribed by the treating team using standard criteria (awake PaO2 \<55 mmHg or room air oxygen saturation below 88% (Masa JF et al. J Clin Sleep Med. 2016 ;12:1379-88)
"Lifestyle modifications" group (Control)
It will consist of a 1,000-calorie/day diet and to maintain proper sleep hygiene and habits (avoid supine decubitus position, maintain regular sleep habits and exercise, not take sedatives, stimulants, alcohol, tobacco or heavy meals within four hours before bedtime). Oxygen therapy can be prescribed by the treating team using standard criteria (awake PaO2 \<55 mmHg or room air oxygen saturation below 88% (Masa JF et al. J Clin Sleep Med. 2016 ;12:1379-88). The treatment period will be three months.
Life style modificacion and automatic NIV(AVAPS-AE)
Automatic NIV: In addition to lifestyle modification and oxygen (if required), the ventilator will be adjusted to a range of predetermined parameters with the intelligent ventilation mode (pressure of intelligent support with guaranteed volume with automatic backup frequency) with the following adjustment: maximum pressure: 35 cmH2O; respiratory rate: automatic; maximum pressure support: 20 cm H2O; minimum pressure support: 4 cmH2O; maximum EPAP pressure: 15 cmH2O; minimum EPAP pressure: 4 cmH2O; and tidal volume (Vt) based on 8-10 ml/kg of predicted body weight. These parameters may be modified according to patient tolerance or non-compensated leak.
Automatic NIV
In addition to lifestyle modification and oxygen (if required), the ventilator will be adjusted to a range of predetermined parameters with the intelligent ventilation mode (pressure of intelligent support with guaranteed volume with automatic backup frequency) with the following adjustment: maximum pressure: 35 cmH2O; respiratory rate: automatic; maximum pressure support: 18 cm H2O; minimum pressure support: 4 cmH2O; maximum EPAP pressure: 15 cmH2O; minimum EPAP pressure: 4 cmH2O; and tidal volume (Vt) based on 8-10 ml/kg of predicted body weight, being able to be modified according to tolerance.The treatment period will be three months.
Life style modification and titrated NIV(S/T mode)
In-laboratory polysomnographic NIV titration will be performed according to published guidelines (Berry R et al JCSM 2010). In addition to lifestyle modification and oxygen (if required), home NIV therapy with fixed pressures will be started. The ventilator mode will be a bilevel PAP with backup respiratory rate (BIPAP S/T mode). The ventilator adjustment will be firstly performed in awake situation and then during sleep by means of a PSG.
CPAP treatment group
In-laboratory polysomnographic CPAP titration will be performed according to published guidelines for CPAP titration (SEPAR guideline or AASM guideline).In addition to lifestyle modification and oxygen (if require), a home titrated CPAP therapy will be initiated.The treatment period will be three years.
Life style modification and titrated CPAP
In-laboratory polysomnographic CPAP titration will be performed according to published guidelines (SEPAR guideline or AASM guideline). In addition to lifestyle modification and oxygen (if required), home CPAP therapy at a fixed pressure will be initiated.
NIV treatment groups
In-laboratory polysomnographic NIV titration will be performed according to published guidelines In addition to lifestyle modification and oxygen (if required) home NIV therapy with fixed pressures will be started. The ventilator mode will be a bilevel pressure in S/T mode. The ventilator adjustment will be firstly performed in awake situation and then during sleep by means of a PSG. The treatment period will be three years.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
"Lifestyle modifications" group (Control)
It will consist of a 1,000-calorie/day diet and to maintain proper sleep hygiene and habits (avoid supine decubitus position, maintain regular sleep habits and exercise, not take sedatives, stimulants, alcohol, tobacco or heavy meals within four hours before bedtime). Oxygen therapy can be prescribed by the treating team using standard criteria (awake PaO2 \<55 mmHg or room air oxygen saturation below 88% (Masa JF et al. J Clin Sleep Med. 2016 ;12:1379-88). The treatment period will be three months.
Automatic NIV
In addition to lifestyle modification and oxygen (if required), the ventilator will be adjusted to a range of predetermined parameters with the intelligent ventilation mode (pressure of intelligent support with guaranteed volume with automatic backup frequency) with the following adjustment: maximum pressure: 35 cmH2O; respiratory rate: automatic; maximum pressure support: 18 cm H2O; minimum pressure support: 4 cmH2O; maximum EPAP pressure: 15 cmH2O; minimum EPAP pressure: 4 cmH2O; and tidal volume (Vt) based on 8-10 ml/kg of predicted body weight, being able to be modified according to tolerance.The treatment period will be three months.
CPAP treatment group
In-laboratory polysomnographic CPAP titration will be performed according to published guidelines for CPAP titration (SEPAR guideline or AASM guideline).In addition to lifestyle modification and oxygen (if require), a home titrated CPAP therapy will be initiated.The treatment period will be three years.
NIV treatment groups
In-laboratory polysomnographic NIV titration will be performed according to published guidelines In addition to lifestyle modification and oxygen (if required) home NIV therapy with fixed pressures will be started. The ventilator mode will be a bilevel pressure in S/T mode. The ventilator adjustment will be firstly performed in awake situation and then during sleep by means of a PSG. The treatment period will be three years.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. º.- With diagnosis of OHS (according to Obesity (BMI ≥30 kg/m2) and Hypercapnic respiratory failure (PaCO2 ≥45 mmHg at hospital discharge) not secondary to other causes.
3. º - Hospitalized for an episode of acute-on-chronic hypercapnic respiratory failure, receiving hospital therapy with invasive or noninvasive ventilation, and just deemed stable for home discharge."
4. º.- No NIV or CPAP home therapy in the last 6 months\[\*\].
5. º.- Being able to tolerate and correctly execute a 15-minute test with automatic NIV (AVAPS-AE) and another 15-minute test with fixed CPAP treatments during wakefulness.
6. º.- Providing informed consent (dated and signed).
\[\*\] Patients who have objective evidence of minimal PAP therapy during the 6 months prior to hospital admission (i.e. average daily use of less than 2 hours of PAP therapy) can also be enrolled at the discretion of the investigators if they feel the patient is now more interested in being adherent to NIV therapy.
1º.- Included three months ago in the first phase of the study (followed by a washout period of 5 days).
Exclusion Criteria
2. º.- With neuromuscular disease, thoracic wall or metabolic disease that may cause diurnal hypercapnia.
3. º.- Inability to maintain a patent airway or adequately clear secretions.
4. º.- With bullous lung disease or with pneumothorax.
5. º.- With bypassed upper airway (i.e. endotracheal tube or tracheostomy).
6. º.- With anatomical abnormalities of the craniofacial structure leading to cerebral spinal fluid leaks, abnormalities of the cribriform plate, and/or pneumocephalus.
7. º.- At risk for aspiration of gastric contents.
8. º.- Diagnosed with acute sinusitis or otitis media.
9. º.- With active hemoptysis or epistaxis if presenting a risk of causing pulmonary aspiration of blood.
10. º.- With symptomatic hypotension.
11. º.- With clinical diagnosis of narcolepsy or restless leg syndrome.
12. º.- Psycho-physical incapacity to complete questionnaires.
13. º.- With diagnosis of chronic illness that might interfere the evaluation using quality of life questionnaires (neoplasia, severe chronic pain of any type, and any other severe chronic debilitating illness).
14. º.- Suffering other clinically relevant disease that, under the opinion of the investigator, might affect the evaluations of efficacy or safety.
15. º.- Participating simultaneously in other clinical study with intervention (or without intervention at the discretion of the investigator and with the consent of the Sponsor) or had participated in other clinical study with intervention within the last 30 days before the inclusion in this study. \[‡\]
16. º.- If for any reason (planned surgery \[including bariatric surgery\], trips of long duration, etc.) would not be able to receive the treatment and/or attend the follow-up visits of this study within the next three years and three months.
17. º.- Persons deprived of liberty by judicial or administrative decision, persons under psychiatric treatment and persons placed in a health or social institution for purposes other than those of this clinical study.
18. º.- Adults who are subject to a legal protection measure or who are unable to express their consent.
\[‡\] This prohibition shall be maintained for the duration of the patients' participation in the study. This is because, if patients received other treatments, it could be difficult to interpret the causality of the results obtained (whether beneficial or harmful effects) and the possible contraindications.
1º.- With apnea hypopnea index (AHI) lower than 5 (absence or very mild obstructive sleep apnea).
18 Years
85 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Rush University Medical Center
OTHER
Juan F. Masa
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Juan F. Masa
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Juan F Masa, MD, Phd
Role: PRINCIPAL_INVESTIGATOR
Servicio Extremeño de Salud
Babak Mokhlesi, MD, Prof
Role: PRINCIPAL_INVESTIGATOR
Rush University Medical Center
References
Explore related publications, articles, or registry entries linked to this study.
Storre JH, Seuthe B, Fiechter R, Milioglou S, Dreher M, Sorichter S, Windisch W. Average volume-assured pressure support in obesity hypoventilation: A randomized crossover trial. Chest. 2006 Sep;130(3):815-21. doi: 10.1378/chest.130.3.815.
Masa JF, Rubio M, Findley LJ. Habitually sleepy drivers have a high frequency of automobile crashes associated with respiratory disorders during sleep. Am J Respir Crit Care Med. 2000 Oct;162(4 Pt 1):1407-12. doi: 10.1164/ajrccm.162.4.9907019.
Teran-Santos J, Jimenez-Gomez A, Cordero-Guevara J. The association between sleep apnea and the risk of traffic accidents. Cooperative Group Burgos-Santander. N Engl J Med. 1999 Mar 18;340(11):847-51. doi: 10.1056/NEJM199903183401104.
Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005 Mar 19-25;365(9464):1046-53. doi: 10.1016/S0140-6736(05)71141-7.
Kessler R, Chaouat A, Schinkewitch P, Faller M, Casel S, Krieger J, Weitzenblum E. The obesity-hypoventilation syndrome revisited: a prospective study of 34 consecutive cases. Chest. 2001 Aug;120(2):369-76. doi: 10.1378/chest.120.2.369.
Masa JF, Corral J, Alonso ML, Ordax E, Troncoso MF, Gonzalez M, Lopez-Martinez S, Marin JM, Marti S, Diaz-Cambriles T, Chiner E, Aizpuru F, Egea C; Spanish Sleep Network. Efficacy of Different Treatment Alternatives for Obesity Hypoventilation Syndrome. Pickwick Study. Am J Respir Crit Care Med. 2015 Jul 1;192(1):86-95. doi: 10.1164/rccm.201410-1900OC.
Castro-Anon O, Perez de Llano LA, De la Fuente Sanchez S, Golpe R, Mendez Marote L, Castro-Castro J, Gonzalez Quintela A. Obesity-hypoventilation syndrome: increased risk of death over sleep apnea syndrome. PLoS One. 2015 Feb 11;10(2):e0117808. doi: 10.1371/journal.pone.0117808. eCollection 2015.
Basoglu OK, Tasbakan MS. Comparison of clinical characteristics in patients with obesity hypoventilation syndrome and obese obstructive sleep apnea syndrome: a case-control study. Clin Respir J. 2014 Apr;8(2):167-74. doi: 10.1111/crj.12054. Epub 2013 Nov 28.
Priou P, Hamel JF, Person C, Meslier N, Racineux JL, Urban T, Gagnadoux F. Long-term outcome of noninvasive positive pressure ventilation for obesity hypoventilation syndrome. Chest. 2010 Jul;138(1):84-90. doi: 10.1378/chest.09-2472. Epub 2010 Mar 26.
Berg G, Delaive K, Manfreda J, Walld R, Kryger MH. The use of health-care resources in obesity-hypoventilation syndrome. Chest. 2001 Aug;120(2):377-83. doi: 10.1378/chest.120.2.377.
Corral J, Mogollon MV, Sanchez-Quiroga MA, Gomez de Terreros J, Romero A, Caballero C, Teran-Santos J, Alonso-Alvarez ML, Gomez-Garcia T, Gonzalez M, Lopez-Martinez S, de Lucas P, Marin JM, Romero O, Diaz-Cambriles T, Chiner E, Egea C, Lang RM, Mokhlesi B, Masa JF; Spanish Sleep Network. Echocardiographic changes with non-invasive ventilation and CPAP in obesity hypoventilation syndrome. Thorax. 2018 Apr;73(4):361-368. doi: 10.1136/thoraxjnl-2017-210642. Epub 2017 Nov 16.
Masa JF, Corral J, Romero A, Caballero C, Teran-Santos J, Alonso-Alvarez ML, Gomez-Garcia T, Gonzalez M, Lopez-Martin S, De Lucas P, Marin JM, Marti S, Diaz-Cambriles T, Chiner E, Merchan M, Egea C, Obeso A, Mokhlesi B; Spanish Sleep Network( *). Protective Cardiovascular Effect of Sleep Apnea Severity in Obesity Hypoventilation Syndrome. Chest. 2016 Jul;150(1):68-79. doi: 10.1016/j.chest.2016.02.647. Epub 2016 Feb 27.
Weitzenblum E, Kessler R, Chaouat A. [Alveolar hypoventilation in the obese: the obesity-hypoventilation syndrome]. Rev Pneumol Clin. 2002 Apr;58(2):83-90. French.
Chaouat A, Weitzenblum E, Krieger J, Sforza E, Hammad H, Oswald M, Kessler R. Prognostic value of lung function and pulmonary haemodynamics in OSA patients treated with CPAP. Eur Respir J. 1999 May;13(5):1091-6. doi: 10.1034/j.1399-3003.1999.13e25.x.
Biring MS, Lewis MI, Liu JT, Mohsenifar Z. Pulmonary physiologic changes of morbid obesity. Am J Med Sci. 1999 Nov;318(5):293-7. doi: 10.1097/00000441-199911000-00002.
Leech J, Onal E, Aronson R, Lopata M. Voluntary hyperventilation in obesity hypoventilation. Chest. 1991 Nov;100(5):1334-8. doi: 10.1378/chest.100.5.1334.
Zwillich CW, Sutton FD, Pierson DJ, Greagh EM, Weil JV. Decreased hypoxic ventilatory drive in the obesity-hypoventilation syndrome. Am J Med. 1975 Sep;59(3):343-8. doi: 10.1016/0002-9343(75)90392-7.
MacGregor MI, Block AJ, Ball WC Jr. Topics in clinical medicine: serious complications and sudden death in the Pickwickian syndrome. Johns Hopkins Med J. 1970 May;126(5):279-95. No abstract available.
Miller A, Granada M. In-hospital mortality in the Pickwickian syndrome. Am J Med. 1974 Feb;56(2):144-50. doi: 10.1016/0002-9343(74)90591-9. No abstract available.
Jennum P, Kjellberg J. Health, social and economical consequences of sleep-disordered breathing: a controlled national study. Thorax. 2011 Jul;66(7):560-6. doi: 10.1136/thx.2010.143958. Epub 2011 Jan 2.
Olson AL, Zwillich C. The obesity hypoventilation syndrome. Am J Med. 2005 Sep;118(9):948-56. doi: 10.1016/j.amjmed.2005.03.042.
Berger KI, Ayappa I, Chatr-Amontri B, Marfatia A, Sorkin IB, Rapoport DM, Goldring RM. Obesity hypoventilation syndrome as a spectrum of respiratory disturbances during sleep. Chest. 2001 Oct;120(4):1231-8. doi: 10.1378/chest.120.4.1231.
Masa JF, Corral J, Caballero C, Barrot E, Teran-Santos J, Alonso-Alvarez ML, Gomez-Garcia T, Gonzalez M, Lopez-Martin S, De Lucas P, Marin JM, Marti S, Diaz-Cambriles T, Chiner E, Egea C, Miranda E, Mokhlesi B; Spanish Sleep Network; Garcia-Ledesma E, Sanchez-Quiroga MA, Ordax E, Gonzalez-Mangado N, Troncoso MF, Martinez-Martinez MA, Cantalejo O, Ojeda E, Carrizo SJ, Gallego B, Pallero M, Ramon MA, Diaz-de-Atauri J, Munoz-Mendez J, Senent C, Sancho-Chust JN, Ribas-Solis FJ, Romero A, Benitez JM, Sanchez-Gomez J, Golpe R, Santiago-Recuerda A, Gomez S, Bengoa M. Non-invasive ventilation in obesity hypoventilation syndrome without severe obstructive sleep apnoea. Thorax. 2016 Oct;71(10):899-906. doi: 10.1136/thoraxjnl-2016-208501. Epub 2016 Jul 12.
Masa JF, Mokhlesi B, Benitez I, Gomez de Terreros FJ, Sanchez-Quiroga MA, Romero A, Caballero-Eraso C, Teran-Santos J, Alonso-Alvarez ML, Troncoso MF, Gonzalez M, Lopez-Martin S, Marin JM, Marti S, Diaz-Cambriles T, Chiner E, Egea C, Barca J, Vazquez-Polo FJ, Negrin MA, Martel-Escobar M, Barbe F, Corral J; Spanish Sleep Network. Long-term clinical effectiveness of continuous positive airway pressure therapy versus non-invasive ventilation therapy in patients with obesity hypoventilation syndrome: a multicentre, open-label, randomised controlled trial. Lancet. 2019 Apr 27;393(10182):1721-1732. doi: 10.1016/S0140-6736(18)32978-7. Epub 2019 Mar 29.
Mokhlesi B. Obesity hypoventilation syndrome: a state-of-the-art review. Respir Care. 2010 Oct;55(10):1347-62; discussion 1363-5.
Lee WY, Mokhlesi B. Diagnosis and management of obesity hypoventilation syndrome in the ICU. Crit Care Clin. 2008 Jul;24(3):533-49, vii. doi: 10.1016/j.ccc.2008.02.003.
Berry RB, Chediak A, Brown LK, Finder J, Gozal D, Iber C, Kushida CA, Morgenthaler T, Rowley JA, Davidson-Ward SL; NPPV Titration Task Force of the American Academy of Sleep Medicine. Best clinical practices for the sleep center adjustment of noninvasive positive pressure ventilation (NPPV) in stable chronic alveolar hypoventilation syndromes. J Clin Sleep Med. 2010 Oct 15;6(5):491-509.
Mokhlesi B, Masa JF, Brozek JL, Gurubhagavatula I, Murphy PB, Piper AJ, Tulaimat A, Afshar M, Balachandran JS, Dweik RA, Grunstein RR, Hart N, Kaw R, Lorenzi-Filho G, Pamidi S, Patel BK, Patil SP, Pepin JL, Soghier I, Tamae Kakazu M, Teodorescu M. Evaluation and Management of Obesity Hypoventilation Syndrome. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2019 Aug 1;200(3):e6-e24. doi: 10.1164/rccm.201905-1071ST.
Carrillo A, Ferrer M, Gonzalez-Diaz G, Lopez-Martinez A, Llamas N, Alcazar M, Capilla L, Torres A. Noninvasive ventilation in acute hypercapnic respiratory failure caused by obesity hypoventilation syndrome and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012 Dec 15;186(12):1279-85. doi: 10.1164/rccm.201206-1101OC. Epub 2012 Oct 26.
Howard ME, Piper AJ, Stevens B, Holland AE, Yee BJ, Dabscheck E, Mortimer D, Burge AT, Flunt D, Buchan C, Rautela L, Sheers N, Hillman D, Berlowitz DJ. A randomised controlled trial of CPAP versus non-invasive ventilation for initial treatment of obesity hypoventilation syndrome. Thorax. 2017 May;72(5):437-444. doi: 10.1136/thoraxjnl-2016-208559. Epub 2016 Nov 15.
Murphy PB, Davidson C, Hind MD, Simonds A, Williams AJ, Hopkinson NS, Moxham J, Polkey M, Hart N. Volume targeted versus pressure support non-invasive ventilation in patients with super obesity and chronic respiratory failure: a randomised controlled trial. Thorax. 2012 Aug;67(8):727-34. doi: 10.1136/thoraxjnl-2011-201081. Epub 2012 Mar 1.
Palm A, Midgren B, Janson C, Lindberg E. Gender differences in patients starting long-term home mechanical ventilation due to obesity hypoventilation syndrome. Respir Med. 2016 Jan;110:73-8. doi: 10.1016/j.rmed.2015.11.010. Epub 2015 Nov 26.
Budweiser S, Riedl SG, Jorres RA, Heinemann F, Pfeifer M. Mortality and prognostic factors in patients with obesity-hypoventilation syndrome undergoing noninvasive ventilation. J Intern Med. 2007 Apr;261(4):375-83. doi: 10.1111/j.1365-2796.2007.01765.x.
Borel JC, Burel B, Tamisier R, Dias-Domingos S, Baguet JP, Levy P, Pepin JL. Comorbidities and mortality in hypercapnic obese under domiciliary noninvasive ventilation. PLoS One. 2013;8(1):e52006. doi: 10.1371/journal.pone.0052006. Epub 2013 Jan 16.
McArdle N, Rea C, King S, Maddison K, Ramanan D, Ketheeswaran S, Erikli L, Baker V, Armitstead J, Richards G, Singh B, Hillman D, Eastwood P. Treating Chronic Hypoventilation With Automatic Adjustable Versus Fixed EPAP Intelligent Volume-Assured Positive Airway Pressure Support (iVAPS): A Randomized Controlled Trial. Sleep. 2017 Oct 1;40(10). doi: 10.1093/sleep/zsx136.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
PI19/00955
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.