Meta-analysis of Low-calorie Sweetened Beverages and Cardiometabolic Outcomes

NCT ID: NCT04245826

Last Updated: 2020-02-25

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

1 participants

Study Classification

OBSERVATIONAL

Study Start Date

2019-05-16

Study Completion Date

2020-05-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

We propose to conduct a systematic literature review and meta-analysis to assess the association of low-calorie sweetened beverages (LCSBs) on cardiometabolic outcomes in prospective cohort studies. We will be using methodological approaches (change in LCSBs intake, and/or substitution analysis) that attempt to overcome the issue of reverse causality associated with studies of LCSBs and cardiometabolic disease. Ten cardiometabolic outcomes will be assessed:

1. Global adiposity - body weight
2. Global adiposity - BMI
3. Global adiposity - body fat
4. Abdominal adiposity - waist circumference
5. Overweight/obesity incidence
6. Metabolic syndrome incidence
7. Type 2 diabetes incidence
8. Cardiovascular disease incidence
9. Cardiovascular disease mortality
10. Total mortality

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Background:

Low-calorie sweetened beverages (LCSBs) may provide a potentially important means for displacing excess calories from free sugars in the diet. However, prospective cohort studies suggest that the use of LCSBs may contribute to an increased risk of obesity and diabetes. These findings are likely due to methodological limitations of study design and analysis that do not account for reverse causality, where higher risk of cardiometabolic outcomes may lead to people to switch to LCSBs. There is a need for a systematic review and meta-analysis (SRMA) of prospective cohort studies to overcome these methodological limitations.

Objective:

We will conduct a SRMA of prospective cohort studies in human subjects that have assessed cardiometabolic outcomes using two analytical strategies:

i) Assessment of change in intake of LCSBs with change in outcome (change analysis)

ii) Assessment of substitution of LCSBs for sugar-sweetened beverages (SSBs) or water.

Design:

We will conduct a SRMA according to the Cochrane Handbook for Systematic Reviews of Interventions and report the findings according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines.

Data sources:

MEDLINE, EMBASE, and the Cochrane Library databases will be searched using appropriate search terms, supplemented by hand searches of references of included studies. No restriction will be placed on language.

Study selection:

Prospective cohort studies reporting (a) change analysis (change in intake of LCSBs with the change in outcome), and/or (b) substitution analysis (substitution of SSBs with LCSBs or water) with more than 1-year of follow-up will be used. Cohort studies that have a follow-up duration \<1 year, do not report assessment of exposure, or do not provide viable outcome data by level of exposure will be excluded.

Data extraction

Two or more investigators will independently extract relevant data and assess risk of bias using the Newcastle-Ottawa Scale (NOS) for prospective cohorts. All disagreements will be resolved by consensus. Risk ratios (RRs), odds ratios (ORs) and hazard ratios (HRs) for clinical outcomes in the prospective cohort studies will be extracted or derived from clinical event data across exposure categories.

Outcomes:

Ten cardiometabolic health outcomes will be assessed:

1. Global adiposity - body weight
2. Global adiposity - BMI
3. Global adiposity - body fat
4. Abdominal adiposity - waist circumference
5. Overweight/obesity incidence
6. Metabolic syndrome incidence
7. Type 2 diabetes incidence
8. Cardiovascular disease incidence
9. Cardiovascular disease mortality
10. Total mortality

Data synthesis:

Natural log-transformed RRs or HRs of clinical outcomes, comparing extreme quantiles (the highest exposure versus the lowest exposure or reference group), will be pooled separately using the generic inverse variance method with random effects models and expressed as RRs with 95% confidence intervals (CIs). Heterogeneity will be tested by Cochran's Q statistic and quantified by the I2 statistic. To explore sources of heterogeneity, we will conduct sensitivity analyses, in which each study is systematically removed. If ≥10 cohort comparisons are available, then we will perform an a-priori subgroup analyses by meta-regression for follow-up (\<10 years vs. ≥10 years), sex (males vs. females, males vs. mixed, females vs. mixed), study quality (NOS \<6 vs. ≥6) and funding source. Significant unexplained heterogeneity will be investigated by additional post hoc subgroup analyses and influence analysis. A study will be considered influential if it changes the direction or significance of the pooled estimates or the evidence of heterogeneity. Dose response estimates will be pooled using one-stage linear mixed model. When ≥10 studies are available, publication bias will be investigated by inspection of funnel plots and formal testing using the Egger and Begg tests. If publication bias is suspected, we will attempt to adjust for funnel plot asymmetry by imputing the missing study data using the Duval and Tweedie trim and fill method.

Evidence assessment:

The overall certainty of evidence for each outcome will be assessed using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE).

Knowledge translation plan:

The results will be disseminated through interactive presentations at local, national, and international scientific meetings and publication in high impact factor journals. Target audiences will include the public health and scientific communities with interest in nutrition, diabetes, obesity, and cardiovascular disease. Feedback will be incorporated and used to improve the public health message and key areas for future research will be defined. Applicant/Co-applicant Decision Makers will network among opinion leaders to increase awareness and participate directly as committee members in the development of future guidelines.

Significance:

The proposed project will aid in knowledge translation to the role of the LCSBs role as a replacement strategy for SSBs, strengthening the evidence-base for guidelines and improving health outcomes by educating healthcare providers and patients, stimulating industry innovation, and guiding future research design.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Adiposity Metabolic Syndrome Type 2 Diabetes Cardiovascular Diseases Mortality

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Low-calorie Sweetened Beverages (LCSBs)

Beverages exclusively using zero-energy (e.g., acesulfame-potassium, aspartame, cyclamate, saccharin, sucralose, advantame, neotame), and /or reduced-energy food additives (e.g., stevia, monk fruit).

Change in LCSBs Intake

Intervention Type OTHER

Effect of changing LCSBs intake

Substitute LCSBs for SSBs or Water

Intervention Type OTHER

Effect of substituting LCSBs for SSBs or Water

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Change in LCSBs Intake

Effect of changing LCSBs intake

Intervention Type OTHER

Substitute LCSBs for SSBs or Water

Effect of substituting LCSBs for SSBs or Water

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Prospective cohorts studies
* Duration: more than 1 year follow-up
* Exposure: LCSBs
* Change analysis or substitution analysis of exposure

Exclusion Criteria

* Non-human studies
* Less than 1 year follow-up
* Analysis of baseline or prevalent intake of exposure only
Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Toronto

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

John Sievenpiper

Associate Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

John L Sievenpiper, MD,PhD,FRCPC

Role: PRINCIPAL_INVESTIGATOR

University of Toronto

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital

Toronto, Ontario, Canada

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Canada

References

Explore related publications, articles, or registry entries linked to this study.

Khan TA, Malik VS, Sievenpiper JL. Letter by Khan et al Regarding Article, "Artificially Sweetened Beverages and Stroke, Coronary Heart Disease, and All-Cause Mortality in the Women's Health Initiative". Stroke. 2019 Jun;50(6):e167-e168. doi: 10.1161/STROKEAHA.119.025571. Epub 2019 May 16. No abstract available.

Reference Type BACKGROUND
PMID: 31092156 (View on PubMed)

Malik VS. Non-sugar sweeteners and health. BMJ. 2019 Jan 3;364:k5005. doi: 10.1136/bmj.k5005. No abstract available.

Reference Type BACKGROUND
PMID: 30606710 (View on PubMed)

Johnson RK, Lichtenstein AH, Anderson CAM, Carson JA, Despres JP, Hu FB, Kris-Etherton PM, Otten JJ, Towfighi A, Wylie-Rosett J; American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Quality of Care and Outcomes Research; and Stroke Council. Low-Calorie Sweetened Beverages and Cardiometabolic Health: A Science Advisory From the American Heart Association. Circulation. 2018 Aug 28;138(9):e126-e140. doi: 10.1161/CIR.0000000000000569.

Reference Type BACKGROUND
PMID: 30354445 (View on PubMed)

Toews I, Lohner S, Kullenberg de Gaudry D, Sommer H, Meerpohl JJ. Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ. 2019 Jan 2;364:k4718. doi: 10.1136/bmj.k4718.

Reference Type BACKGROUND
PMID: 30602577 (View on PubMed)

Azad MB, Abou-Setta AM, Chauhan BF, Rabbani R, Lys J, Copstein L, Mann A, Jeyaraman MM, Reid AE, Fiander M, MacKay DS, McGavock J, Wicklow B, Zarychanski R. Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ. 2017 Jul 17;189(28):E929-E939. doi: 10.1503/cmaj.161390.

Reference Type BACKGROUND
PMID: 28716847 (View on PubMed)

Imamura F, Fretts A, Marklund M, Ardisson Korat AV, Yang WS, Lankinen M, Qureshi W, Helmer C, Chen TA, Wong K, Bassett JK, Murphy R, Tintle N, Yu CI, Brouwer IA, Chien KL, Frazier-Wood AC, Del Gobbo LC, Djousse L, Geleijnse JM, Giles GG, de Goede J, Gudnason V, Harris WS, Hodge A, Hu F; InterAct Consortium; Koulman A, Laakso M, Lind L, Lin HJ, McKnight B, Rajaobelina K, Riserus U, Robinson JG, Samieri C, Siscovick DS, Soedamah-Muthu SS, Sotoodehnia N, Sun Q, Tsai MY, Uusitupa M, Wagenknecht LE, Wareham NJ, Wu JH, Micha R, Forouhi NG, Lemaitre RN, Mozaffarian D; Fatty Acids and Outcomes Research Consortium (FORCE). Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Med. 2018 Oct 10;15(10):e1002670. doi: 10.1371/journal.pmed.1002670. eCollection 2018 Oct.

Reference Type BACKGROUND
PMID: 30303968 (View on PubMed)

Rogers PJ, Hogenkamp PS, de Graaf C, Higgs S, Lluch A, Ness AR, Penfold C, Perry R, Putz P, Yeomans MR, Mela DJ. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes (Lond). 2016 Mar;40(3):381-94. doi: 10.1038/ijo.2015.177. Epub 2015 Sep 14.

Reference Type BACKGROUND
PMID: 26365102 (View on PubMed)

Lee JJ, Khan TA, McGlynn N, Malik VS, Hill JO, Leiter LA, Jeppesen PB, Rahelic D, Kahleova H, Salas-Salvado J, Kendall CWC, Sievenpiper JL. Relation of Change or Substitution of Low- and No-Calorie Sweetened Beverages With Cardiometabolic Outcomes: A Systematic Review and Meta-analysis of Prospective Cohort Studies. Diabetes Care. 2022 Aug 1;45(8):1917-1930. doi: 10.2337/dc21-2130.

Reference Type DERIVED
PMID: 35901272 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

DNSG-LCSBs (cohorts)

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Beverages and Societal Health
NCT01295671 COMPLETED NA
Fizzy Drinks Study
NCT02735889 COMPLETED NA