Thalamic Stimulation for Epilepsy Study

NCT ID: NCT04102254

Last Updated: 2022-08-25

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

WITHDRAWN

Clinical Phase

NA

Study Classification

INTERVENTIONAL

Study Start Date

2023-01-07

Study Completion Date

2025-01-10

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

In this study, the investigator aims to perform cortical stereo electroencephalogram (sEEG) recordings during simultaneous anterior nucleus of the thalamus (ANT) recording and stimulation to better understand the following: 1) how the ANT is involved in various seizure types; 2) which cortical regions are modulated by established ANT stimulation patterns; and 3) how novel ANT stimulation patterns modify epileptogenic cortical activity. Together, this knowledge will advance ANT deep brain stimulation (DBS) therapy by providing a physiologic basis for patient selection for ANT DBS, while identifying brain signals and stimulation patterns that can be used to develop novel methods for ANT DBS. Up to 15 adult patients (18 and older) who present to Duke Neurosurgery for routine seizure localization using sEEG will be asked to enroll in this pilot study of ANT recording and stimulation. In the course of surgical epilepsy treatment, patients routinely undergo surgical placement of sEEG electrodes for the purposes of seizure localization. During this procedure, 2 additional leads will be placed in the ANT. These patients remain hospitalized for 7-14 days after sEEG placement, during which time their seizure medications are tapered. Concurrent video monitoring is performed while continuous neural recordings are made through the sEEG electrodes. Additionally, continuous recordings will be performed through the electrodes placed in the thalamus. Periodically, standard intermittent high-frequency stimulation (130 Hz, 90-ms pulse width, and 2 mA intensity) will be performed with a 60-s on and a 300-s off cycle after surgery. These standard ANT stimulation parameters are employed clinically. Data will include the sEEG recordings marked for ANT stimulation, any side effects, medications, past medical history (PMH), and tests/procedures during the hospital stay. Risks involved are as described for the standard depth electrode surgery with the addition of the possible side effects from the stimulation which include sensations of numbness and tingling, and possibly increased seizure activity.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The purpose of this research is to examine the physiologic underpinnings of deep brain stimulation of the anterior nucleus of the thalamus (ANT), a method reducing seizures in adults diagnosed with medically refractory epilepsy. In this study, the investigator aims to perform cortical stereo electroencephalogram (sEEG) recordings during simultaneous ANT recording and stimulation to better understand the following: 1) how the ANT is involved in various seizure types; 2) which cortical regions are modulated by established ANT stimulation patterns; and 3) how novel ANT stimulation patterns modify epileptogenic cortical activity. Together, this knowledge will advance ANT DBS therapy by providing a physiologic basis for patient selection for ANT DBS, while identifying brain signals and stimulation patterns that can be used to develop novel methods for ANT DBS.

Approximately 3 million people in the United States experience epilepsy. Despite medical therapy, up to 30% of these patients continue to experience recurrent seizures. In this medically refractory population, tissue resection or ablation offer a high likelihood of seizure freedom, if a single epileptogenic focus can be precisely identified. For patients who are not candidates for resection or ablation, or those who continue to have seizures after these treatments, neuromodulation represents an alternative therapeutic option. One such therapy, deep brain stimulation (DBS) has been approved for around 5 years in Europe and was recently approved in the United States as a treatment for medically refractory epilepsy.

A number of potential DBS targets are being investigated, particularly, the ANT, which consists of the anteroventral, anterodorsal, and anteromedial nuclei. The ANT was recognized as a potential target because of its central connectivity to cortical regions where seizures often originate. Several pilot studies and recent trials have demonstrated 5-year efficacy and safety outcomes for ANT DBS. In a large randomized controlled study of ANT stimulation with long-term follow-up, there was a 56% median seizure reduction at the 2 year, and a 69% median and seizure reduction at the 5 year, in patients with drug-resistant focal epilepsy. This study also suggested that patients with temporal lobe epilepsy achieved greater benefit than those with extra-temporal or multifocal seizures. Since these pivotal trials, DBS of the ANT has emerged as a promising therapy for focal drug resistant epilepsy, however, its basic mechanism of action is unclear. One study which examined cortical local field potentials recordings during high-frequency ANT stimulation (130 Hz), has suggested that epileptic network desynchronization is a potential mechanism of DBS of the ANT.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Seizures Epilepsy Seizure Disorder

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

BASIC_SCIENCE

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

ANT recording and stimulation

Up to 15 adult patients who present to Duke Neurosurgery for routine seizure location using sEEG will be asked to enroll in this pilot study of ANT recording and stimulation. Once enrolled in the trial, subjects will have additional placement of two thalamic electrodes during the course of standard sEEG placement surgery. Patients routinely remain hospitalized for 7-14 days after sEEG placement, during which time their seizure medications are tapered. Continuous neural recordings are made through the sEEG electrodes for the purposes of seizure localization during the entire time the depth electrodes are in place. Up to three times daily, standard intermittent high-frequency stimulation \[130 Hertz (Hz), 90-millisecond pulse width, and 2 milliamps (mA) intensity\] will be performed with a 60-seconds on and a 300-seconds off cycle following surgery up to the entire length of sEEG monitoring.

Group Type EXPERIMENTAL

ANT recording and stimulation

Intervention Type PROCEDURE

In this study, the investigator aims to perform sEEG recordings during simultaneous ANT recording and stimulation to better understand the following: 1) how the ANT is involved in various seizure types; 2) which cortical regions are modulated by established ANT stimulation patterns; and 3) how novel ANT stimulation patterns modify epileptogenic cortical activity.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

ANT recording and stimulation

In this study, the investigator aims to perform sEEG recordings during simultaneous ANT recording and stimulation to better understand the following: 1) how the ANT is involved in various seizure types; 2) which cortical regions are modulated by established ANT stimulation patterns; and 3) how novel ANT stimulation patterns modify epileptogenic cortical activity.

Intervention Type PROCEDURE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

All epilepsy patients admitted to Duke Hospital for surgical placement of depth electrodes age 18 and up are eligible.
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Duke University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Derek Southwell, M.D., Ph.D.

Role: PRINCIPAL_INVESTIGATOR

Duke Health

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Duke University Health System

Durham, North Carolina, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

Pro00103374

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Neural Basis of Cognition
NCT05132543 NOT_YET_RECRUITING NA
Microelectrodes in Epilepsy
NCT05200455 COMPLETED NA