Eye Movements, Visual Perception and Attention

NCT ID: NCT03884985

Last Updated: 2025-06-18

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

155 participants

Study Classification

INTERVENTIONAL

Study Start Date

2018-01-01

Study Completion Date

2024-02-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

During visual fixation, small eye movements of which we are usually not aware, prevent the maintenance of a steady direction of gaze. These eye movements are finely controlled and shift retinal projection of objects within the fovea, the region of the retina where visual acuity is highest. This program of research examines the link between these eye movements and attention, and tests the hypothesis that attention, similarly to eye movements, can be controlled at the foveal level. Psychophysical experiments with human subjects, using state-of-the-art techniques, high resolution eyetracking and retinal stabilization are conducted to address these questions. Gaze-contingent calibration procedures are employed to achieve high accuracy in gaze localization. A custom developed gaze-contingent display is used to shift in real-time visual stimuli on the monitor to compensate for the observer eye movements during fixation periods and to maintain stimuli at a desired location on the retina. Experiments involve visual discrimination/detection tasks with stimuli presented at selected eccentricities within the fovea. Participants' performance and reaction times are examined under different conditions, in which various types of attention are manipulated. In addition to advancing our basic understanding of visual perception, this research leads to a better understanding of attentional control at the foveal scale and of the contribution of microscopic eye movements to the acquisition and processing of visual details.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The goals of this study are to the following:

1. Examine the resolution and time-course of attention within the foveola. Attentional control has been traditionally studied outside the foveola but the PI's recent work suggests that attentional shifts also play a critical role in the normal examination of fine spatial details. Building on our previous results, we will investigate the extent by which both voluntary and involuntary attention can be controlled at this scale. Specifically, we will (a) measure the resolution of attention, i.e., the minimum distance between two locations within the foveola that can elicit selective voluntary attentional shifts. We will (b) examine whether enhancements in fine spatial vision at selected foveal locations, such as those we have previously shown for voluntary attention, also occur with involuntary attention. Finally we will study (c) the time-course of attentional enhancements and inhibition of return at this scale. Moreover, to study how peripheral and foveal attention differ, we will compare the extent of exogenous attentional effects and their time-course within and outside the foveola.
2. Map visual acuity and crowding across the foveola. Our research has shown that vision is not uniform across the foveola: discrimination of fine spatial patterns is already suboptimal just a few arcmins away from the center of gaze. This phenomenon could be caused by a decline in visual acuity outside the preferred retinal locus and/or the consequences of crowding, the negative influence resulting from objects adjacent to the target. Because of the difficulty in precisely controlling retinal stimulation at this scale, it is unclear whether crowding occurs in the foveola, and whether its influence changes with foveal eccentricity. We will measure both visual acuity (a), and crowding (b), and will assess their relative contribution over a range of foveal eccentricities, both nasally and temporally. In addition to examine visual acuity across subjects, we will also examine how it changes at the individual level.
3. Link attention, fine spatial vision and oculomotor control. Microsaccades normally shift the retinal projection of the fixated object across the foveola. At a larger scale, visual resolution, attention, and eye movements are tightly coupled. But little is known on whether and how this interplay unfolds within the foveola. Here we will investigate how attention and vision interact with microsaccades preparation and execution. We will examine (a) whether microsaccades preparation yields attentional benefits at specific foveal locations; (b) the precision of microsaccades; (c) their impact in attenuating negative effects of reduced acuity and foveal crowding, and; (d) their impact on performance in natural high acuity tasks.

To address these goals psychophysics experimental paradigms and high-precision eyetracking will be used.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Vision

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

BASIC_SCIENCE

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Normal Vision

This study examines high-acuity vision, oculomotor behavior recorded using high-resolution eyetracking. Healthy participants are asked to perform different types of visual tasks, ranging from letter identification to judging facial expressions while their eye movements will be recorded with high-precision together with their behavioral performance in the task.

Group Type EXPERIMENTAL

Visual stimulation

Intervention Type OTHER

In the experiments, participants will sit in front of a computer monitor located a less than a meter of distance and will analyze the content of images extracted from collections of natural and computer-generated scenes. Subjects will be asked to report verbally or by pressing keys on a keyboard on image characteristics such as the locations of the objects present in the scenes, their number and/or their identities. Some experiments will involve a search paradigm in which subjects will have to report on the location and/or fine characteristics of a target element among a field of distracting similar elements, and/or visual discrimination tasks. The duration of the interval of time in which the image is maintained on the screen may be varied between few tens of milliseconds to several seconds. In a set of experiments, the eye movements performed by the subjects during the execution of the visual tasks will be recorded as explained below.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Visual stimulation

In the experiments, participants will sit in front of a computer monitor located a less than a meter of distance and will analyze the content of images extracted from collections of natural and computer-generated scenes. Subjects will be asked to report verbally or by pressing keys on a keyboard on image characteristics such as the locations of the objects present in the scenes, their number and/or their identities. Some experiments will involve a search paradigm in which subjects will have to report on the location and/or fine characteristics of a target element among a field of distracting similar elements, and/or visual discrimination tasks. The duration of the interval of time in which the image is maintained on the screen may be varied between few tens of milliseconds to several seconds. In a set of experiments, the eye movements performed by the subjects during the execution of the visual tasks will be recorded as explained below.

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Subjects will be eligible for the study if they:

* Are at least 18 years old
* Speak English
* Have read, understood, and signed the informed consent form Have normal visual acuity (20/20 or better) without correction (i.e. without glasses or contact lenses) and no known visual deficits. A standard visual acuity screening will be performed by means of a Snellen chart (the standard eye chart) at the beginning and the end of the experiments.

Exclusion Criteria

* Subjects will be excluded if they:

* Are under 18 years old
* Cannot understand the experimental procedures Have reported vision loss, including the need for correction (i.e. glasses or contact lenses), or fail the visual acuity screening performed during the experiments. We expect a very minor portion of subjects to be excluded as a result of this test, as the good vision requirement will be clearly stated in our recruitment materials. There will be no data collection for subjects who will not pass the acuity test.
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Eye Institute (NEI)

NIH

Sponsor Role collaborator

University of Rochester

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Martina Poletti

Assistant Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Martina Poletti, Ph.D.

Role: PRINCIPAL_INVESTIGATOR

University of Rochester

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Rochester

Rochester, New York, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Document Type: Informed Consent Form

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

R01EY029788-01

Identifier Type: NIH

Identifier Source: secondary_id

View Link

RSRB00069578

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Mechanisms of Perceptual Learning
NCT06822101 ENROLLING_BY_INVITATION NA
Visual Motor Coordination
NCT00568243 TERMINATED
Visual Rehabilitation After Occipital Stroke
NCT04798924 ACTIVE_NOT_RECRUITING NA