The Effects of Glycine on Atherosclerosis and Metabolic Syndrome-related Parameters.
NCT ID: NCT03850314
Last Updated: 2019-02-21
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
PHASE2/PHASE3
50 participants
INTERVENTIONAL
2019-03-31
2020-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Glycemic Response of Co-ingesting Carbohydrate and Amino Acids
NCT02455765
Effects of Hi-maize Resistant Starch on Insulin Sensitivity
NCT01058135
Role of BCAA in Glucose Homeostasis
NCT05836350
Study to Evaluate Safety and Efficacy of PreCrea® on Subjects With Higher Than Normal Blood Sugar Levels
NCT02189005
Study to Determine the Effect of Synbiotics in Patients With Pre-diabetes
NCT04428606
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
PREVENTION
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Glycine
Glycine total daily dose of 150mg/kg divided three times daily with meals (powder dissolved in 1 cup of water) for 12 weeks.
Glycine
Glycine powder to be dissolved in water.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Glycine
Glycine powder to be dissolved in water.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Fulfill at least three of the five diagnostic criteria for the Metabolic Syndrome.
* To be able to give their written consent to participate in this study.
Exclusion Criteria
* Chronic liver disease other than NAFLD.
* Previous gastric or small bowel surgery.
* Abnormal Thyroid-stimulating hormone (TSH) level.
* Known Tobacco Smoking more than 10 cigarettes per day.
* Known alcohol consumption more than 2 drink per day.
* Use of medications that include: Insulin or Insulin secretagogues, Thiazolidinediones, Glucocorticosteroids, Hormone replacement therapy.
* Fever \> 38.2 °C in the past 2 weeks.
* Autoimmune or Auto-inflammatory disease.
* Chronic kidney disease ≥ stage III.
* Nephrotic syndrome.
* Hemoglobin \<12 g/dL.
* Metal clips or implants that preclude magnetic resonance imaging.
40 Years
65 Years
MALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Prof. Tony hayek MD
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Prof. Tony hayek MD
Director, Department of Internal Medicine "E".
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Tony Hayek, MD
Role: PRINCIPAL_INVESTIGATOR
Rambam Health Care Campus
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
References
Explore related publications, articles, or registry entries linked to this study.
Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013 Oct;13(10):709-21. doi: 10.1038/nri3520. Epub 2013 Sep 2.
Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011 Nov 7;17(11):1410-22. doi: 10.1038/nm.2538.
Michas G, Micha R, Zampelas A. Dietary fats and cardiovascular disease: putting together the pieces of a complicated puzzle. Atherosclerosis. 2014 Jun;234(2):320-8. doi: 10.1016/j.atherosclerosis.2014.03.013. Epub 2014 Mar 27.
Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, Miller M, Rimm EB, Rudel LL, Robinson JG, Stone NJ, Van Horn LV; American Heart Association. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation. 2017 Jul 18;136(3):e1-e23. doi: 10.1161/CIR.0000000000000510. Epub 2017 Jun 15.
Rom O, Aviram M. It is not just lipids: proatherogenic vs. antiatherogenic roles for amino acids in macrophage foam cell formation. Curr Opin Lipidol. 2017 Feb;28(1):85-87. doi: 10.1097/MOL.0000000000000377. No abstract available.
Shah SH, Bain JR, Muehlbauer MJ, Stevens RD, Crosslin DR, Haynes C, Dungan J, Newby LK, Hauser ER, Ginsburg GS, Newgard CB, Kraus WE. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 2010 Apr;3(2):207-14. doi: 10.1161/CIRCGENETICS.109.852814. Epub 2010 Feb 19.
Wurtz P, Raiko JR, Magnussen CG, Soininen P, Kangas AJ, Tynkkynen T, Thomson R, Laatikainen R, Savolainen MJ, Laurikka J, Kuukasjarvi P, Tarkka M, Karhunen PJ, Jula A, Viikari JS, Kahonen M, Lehtimaki T, Juonala M, Ala-Korpela M, Raitakari OT. High-throughput quantification of circulating metabolites improves prediction of subclinical atherosclerosis. Eur Heart J. 2012 Sep;33(18):2307-16. doi: 10.1093/eurheartj/ehs020. Epub 2012 Mar 26.
Bhattacharya S, Granger CB, Craig D, Haynes C, Bain J, Stevens RD, Hauser ER, Newgard CB, Kraus WE, Newby LK, Shah SH. Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis. 2014 Jan;232(1):191-6. doi: 10.1016/j.atherosclerosis.2013.10.036. Epub 2013 Nov 12.
Yang R, Dong J, Zhao H, Li H, Guo H, Wang S, Zhang C, Wang S, Wang M, Yu S, Chen W. Association of branched-chain amino acids with carotid intima-media thickness and coronary artery disease risk factors. PLoS One. 2014 Jun 9;9(6):e99598. doi: 10.1371/journal.pone.0099598. eCollection 2014.
Yang RY, Wang SM, Sun L, Liu JM, Li HX, Sui XF, Wang M, Xiu HL, Wang S, He Q, Dong J, Chen WX. Association of branched-chain amino acids with coronary artery disease: A matched-pair case-control study. Nutr Metab Cardiovasc Dis. 2015 Oct;25(10):937-42. doi: 10.1016/j.numecd.2015.06.003. Epub 2015 Jun 14.
Grajeda-Iglesias C, Aviram M. Specific Amino Acids Affect Cardiovascular Diseases and Atherogenesis via Protection against Macrophage Foam Cell Formation: Review Article. Rambam Maimonides Med J. 2018 Jul 30;9(3):e0022. doi: 10.5041/RMMJ.10337.
Ding Y, Svingen GF, Pedersen ER, Gregory JF, Ueland PM, Tell GS, Nygard OK. Plasma Glycine and Risk of Acute Myocardial Infarction in Patients With Suspected Stable Angina Pectoris. J Am Heart Assoc. 2015 Dec 31;5(1):e002621. doi: 10.1161/JAHA.115.002621.
Rom O, Aviram M. Endogenous or exogenous antioxidants vs. pro-oxidants in macrophage atherogenicity. Curr Opin Lipidol. 2016 Apr;27(2):204-6. doi: 10.1097/MOL.0000000000000287. No abstract available.
Rom O, Grajeda-Iglesias C, Najjar M, Abu-Saleh N, Volkova N, Dar DE, Hayek T, Aviram M. Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism. J Nutr Biochem. 2017 Jul;45:24-38. doi: 10.1016/j.jnutbio.2017.02.023. Epub 2017 Apr 6.
Yan-Do R, MacDonald PE. Impaired "Glycine"-mia in Type 2 Diabetes and Potential Mechanisms Contributing to Glucose Homeostasis. Endocrinology. 2017 May 1;158(5):1064-1073. doi: 10.1210/en.2017-00148.
Yamakado M, Tanaka T, Nagao K, Ishizaka Y, Mitushima T, Tani M, Toda A, Toda E, Okada M, Miyano H, Yamamoto H. Plasma amino acid profile is associated with visceral fat accumulation in obese Japanese subjects. Clin Obes. 2012 Feb;2(1-2):29-40. doi: 10.1111/j.1758-8111.2012.00039.x. Epub 2012 May 22.
Gaggini M, Carli F, Rosso C, Buzzigoli E, Marietti M, Della Latta V, Ciociaro D, Abate ML, Gambino R, Cassader M, Bugianesi E, Gastaldelli A. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology. 2018 Jan;67(1):145-158. doi: 10.1002/hep.29465. Epub 2017 Nov 17.
Mirmiran P, Bahadoran Z, Ghasemi A, Azizi F. Contribution of dietary amino acids composition to incidence of cardiovascular outcomes: A prospective population-based study. Nutr Metab Cardiovasc Dis. 2017 Jul;27(7):633-641. doi: 10.1016/j.numecd.2017.05.003. Epub 2017 May 15.
Petrat F, Boengler K, Schulz R, de Groot H. Glycine, a simple physiological compound protecting by yet puzzling mechanism(s) against ischaemia-reperfusion injury: current knowledge. Br J Pharmacol. 2012 Apr;165(7):2059-72. doi: 10.1111/j.1476-5381.2011.01711.x.
Razak MA, Begum PS, Viswanath B, Rajagopal S. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. Oxid Med Cell Longev. 2017;2017:1716701. doi: 10.1155/2017/1716701. Epub 2017 Mar 1.
McCarty MF, Barroso-Aranda J, Contreras F. The hyperpolarizing impact of glycine on endothelial cells may be anti-atherogenic. Med Hypotheses. 2009 Aug;73(2):263-4. doi: 10.1016/j.mehy.2008.12.021. Epub 2009 Feb 18.
McCarty MF, DiNicolantonio JJ. The cardiometabolic benefits of glycine: Is glycine an 'antidote' to dietary fructose? Open Heart. 2014 May 28;1(1):e000103. doi: 10.1136/openhrt-2014-000103. eCollection 2014. No abstract available.
Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids. 2013 Sep;45(3):463-77. doi: 10.1007/s00726-013-1493-1. Epub 2013 Apr 25.
Morscher RJ, Ducker GS, Li SH, Mayer JA, Gitai Z, Sperl W, Rabinowitz JD. Mitochondrial translation requires folate-dependent tRNA methylation. Nature. 2018 Feb 1;554(7690):128-132. doi: 10.1038/nature25460. Epub 2018 Jan 24.
Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;5:3083. doi: 10.1038/ncomms4083.
Kruth HS. Macrophage foam cells and atherosclerosis. Front Biosci. 2001 Mar 1;6:D429-55. doi: 10.2741/kruth.
Diaz-Flores M, Cruz M, Duran-Reyes G, Munguia-Miranda C, Loza-Rodriguez H, Pulido-Casas E, Torres-Ramirez N, Gaja-Rodriguez O, Kumate J, Baiza-Gutman LA, Hernandez-Saavedra D. Oral supplementation with glycine reduces oxidative stress in patients with metabolic syndrome, improving their systolic blood pressure. Can J Physiol Pharmacol. 2013 Oct;91(10):855-60. doi: 10.1139/cjpp-2012-0341. Epub 2013 Jun 17.
Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry. 1999 Jan;56(1):29-36. doi: 10.1001/archpsyc.56.1.29.
Evins AE, Fitzgerald SM, Wine L, Rosselli R, Goff DC. Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry. 2000 May;157(5):826-8. doi: 10.1176/appi.ajp.157.5.826.
Mardinoglu A, Bjornson E, Zhang C, Klevstig M, Soderlund S, Stahlman M, Adiels M, Hakkarainen A, Lundbom N, Kilicarslan M, Hallstrom BM, Lundbom J, Verges B, Barrett PH, Watts GF, Serlie MJ, Nielsen J, Uhlen M, Smith U, Marschall HU, Taskinen MR, Boren J. Personal model-assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol Syst Biol. 2017 Mar 2;13(3):916. doi: 10.15252/msb.20167422.
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002 Dec 17;106(25):3143-421. No abstract available.
Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004 Jun;27(6):1487-95. doi: 10.2337/diacare.27.6.1487.
Dulai PS, Sirlin CB, Loomba R. MRI and MRE for non-invasive quantitative assessment of hepatic steatosis and fibrosis in NAFLD and NASH: Clinical trials to clinical practice. J Hepatol. 2016 Nov;65(5):1006-1016. doi: 10.1016/j.jhep.2016.06.005. Epub 2016 Jun 14.
Permutt Z, Le TA, Peterson MR, Seki E, Brenner DA, Sirlin C, Loomba R. Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease - MRI accurately quantifies hepatic steatosis in NAFLD. Aliment Pharmacol Ther. 2012 Jul;36(1):22-9. doi: 10.1111/j.1365-2036.2012.05121.x. Epub 2012 May 3.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
RMB-18-0621
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.