Influence of Exercise Program on Serum Matrix Metalloproteinases and Functional Status in Women With Postmenopausal Osteoporosis
NCT ID: NCT03816449
Last Updated: 2022-11-15
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
108 participants
INTERVENTIONAL
2018-01-01
2019-11-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
According to the recommendations of the International Association for osteoporosis (the National Osteoporosis Fondation- NOF) the treatment of osteoporosis includes pharmacological and non-pharmacological treatment of. Pharmacological includes a range of different drug, where the bisphosphonates, non-hormonal antiresorptive drugs, present gold standard in the treatment of postmenopausal osteoporosis . Non-pharmacological treatment implies the daily physical activity and the specific exercise program, for the purpose of slowing or stopping the loss of bone mass, improve balance, and reduce the risk of falling and fractures.
It is known that the mechanical loading of the bone has to be strong enough to achieve the effect of osteogenesis. The load due to the long bones of gravity and the tension force produced by the muscular activity, are the natural stimulus for maintenance of bone mass and muscle strength. This can be achieved by practice involving the activities in which the net mass of the body constitutes an additional load (so-called. "Weight-bearing exercises"), as well as exercise resistance from.
Exercise with one's own mass include actions to counter gravity in an upright standing position, and then may be a stronger (high-impact) collides with the substrate (e.g., jumping) and the lower (low-impact) collides with the substrate (e.g., walking). Aerobic exercise, especially walking, is the most common type of intervention because of the ease administration and safety.
Resistance training is another effective type of exercises that can affect the maintenance or improvement of bone mineral density, with the most frequently applied with the combination of the dynamic resistance exercises that engage multiple joints, large groups of muscles, and the burden on the hips and the spine. In order to strength training, with the aim of maintaining and stimulating bone mineral density had the best effect, it is necessary to include the basic principles of specificity, load and progression. Training should be directed to the adaptation of a specific part of the body, should be sufficiently intense to and beyond the common load, and a variety of progressive enough. Progression loads should be slow and gradual to avoid injury. We assumed that this type of exercise can be achieved by changing the activity of serum matrix metalloproteinases.
It has been proven that in the process of remodeling of the extracellular matrix of the bone, matrix-metalloproteinases play an important role, both, the occurrence of bone as well as in pathological processes of bone resorption . Also, it is known that metalloproteinases, particularly the MMP-2 and MMP-9 play a significant role in the development of skeletal muscle recovery from injury or remodeling of the same after exercise.Taking into account the results of the latest studies on the role of metalloproteinases in the development and remodeling of bone, also and muscle, we assumed that the value of metalloproteinases could serve as markers for early assessment of treatment response of patients with osteoporosis. In our study, we will follow the changes of serum levels of metalloproteinases as well as tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) in the serum of patients with postmenopausal osteoporosis, which have prescribed bisphosphonates, before and after application to the specifically designed exercise program . A functional genetic polymorphisms (PM), by modulating the expression of the MMP can be associated with a differential response to the application of our patients of the same exercise program. Specifically designed exercise program in patients with osteoporosis, which affects the increase in BMD and muscle strength, can be associated with a specific MMP genotyp . In our research we will follow the influence of polymorphisms of the mentioned metalloproteinases on the efficacy of the treatment (the specifically designed exercise program ) in patients with postmenopausal osteoporosis.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effects of Physical Training on Bone Turnover and Quality of Life in Osteopenic Postmenopausal Women.
NCT03195517
Effects of Physical Exercise to Prevent Osteoporosis in Postmenopausal Women
NCT03091088
Effects of an Exercise Program on Bone Density
NCT03308292
Development and Evaluation of an Exercise Intervention for Prevention of Vertebral Osteoporosis and Deformity in Postmenopausal Women
NCT04660825
Effects of Physical Exercise on Postmenopausal Risk Factors in Women With Osteopenia
NCT03959995
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
According to the recommendations of the International Association for osteoporosis (the National Osteoporosis Fondation- NOF) the treatment of osteoporosis includes pharmacological and non-pharmacological treatment of. Pharmacological includes a range of different drug, where the bisphosphonates, non-hormonal antiresorptive drugs, present gold standard in the treatment of postmenopausal osteoporosis . Non-pharmacological treatment implies the daily physical activity and the specific exercise program, for the purpose of slowing or stopping the loss of bone mass, improve balance, and reduce the risk of falling and fractures.
It is known that the mechanical loading of the bone has to be strong enough to achieve the effect of osteogenesis. The load due to the long bones of gravity and the tension force produced by the muscular activity, are the natural stimulus for maintenance of bone mass and muscle strength. This can be achieved by practice involving the activities in which the net mass of the body constitutes an additional load (so-called. "Weight-bearing exercises"), as well as exercise resistance from.
Exercise with one's own mass include actions to counter gravity in an upright standing position, and then may be a stronger (high-impact) collides with the substrate (e.g., jumping) and the lower (low-impact) collides with the substrate (e.g., walking). Aerobic exercise, especially walking, is the most common type of intervention because of the ease administration and safety.
Resistance training is another effective type of exercises that can affect the maintenance or improvement of bone mineral density, with the most frequently applied with the combination of the dynamic resistance exercises that engage multiple joints, large groups of muscles, and the burden on the hips and the spine. In order to strength training, with the aim of maintaining and stimulating bone mineral density had the best effect, it is necessary to include the basic principles of specificity, load and progression. Training should be directed to the adaptation of a specific part of the body, should be sufficiently intense to and beyond the common load, and a variety of progressive enough. Progression loads should be slow and gradual to avoid injury. We assumed that this type of exercise can be achieved by changing the activity of serum matrix metalloproteinases.
It has been proven that in the process of remodeling of the extracellular matrix of the bone, matrix-metalloproteinases play an important role, both, the occurrence of bone as well as in pathological processes of bone resorption . Also, it is known that metalloproteinases, particularly the MMP-2 and MMP-9 play a significant role in the development of skeletal muscle recovery from injury or remodeling of the same after exercise.Taking into account the results of the latest studies on the role of metalloproteinases in the development and remodeling of bone, also and muscle, we assumed that the value of metalloproteinases could serve as markers for early assessment of treatment response of patients with osteoporosis. In our study, we will follow the changes of serum levels of metalloproteinases as well as tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) in the serum of patients with postmenopausal osteoporosis, which have prescribed bisphosphonates, before and after application to the specifically designed exercise program . A functional genetic polymorphisms (PM), by modulating the expression of the MMP can be associated with a differential response to the application of our patients of the same exercise program. Specifically designed exercise program in patients with osteoporosis, which affects the increase in BMD and muscle strength, can be associated with a specific MMP genotyp . In our research we will follow the influence of polymorphisms of the mentioned metalloproteinases on the efficacy of the treatment (the specifically designed exercise program ) in patients with postmenopausal osteoporosis.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
experimental group
Experimental group will include postmenopausal women who will practice following exercise program:aerobic exercise, resistance training and balance exercise. Aerobic exercise will be conducted as a dose walk, 3-5 km / h, approximately 70% of maximal heart rate, about 50 minutes per day, five days per week, for 12 weeks. Resistance training and balance exercises will be conducted as a group program and will involve exercises to strengthen the muscles of the upper and lower extremities and balance exercises. The intensity of the training will be increased weekly, starting from 3-5 repeating load and its own weight, up to 8-12 repetitions with straps. Frequency of training will be 3 times per week, will last 70 minutes per day, for 12 weeks.
exercises
Aerobic exercise will be conducted as a dose walk, 3-5 km / h, lasting 50 minutes per day, least five days per week, for 12 weeks. The intensity of the training will be around 70% of the maximal heart rate.
Resistance training and balance exercises will be conducted as a group program and will involve exercises to strengthen the muscles of the upper and lower extremities and balance exercises. The intensity of the training will be increased on weekly, starting from 3-5 repeating load and its own weight, up to 8-12 repetitions and load straps. Progression and maintenance load tapes will be carried out depending on the capacity of individualized persons. Frequency of training will be 3 times a week,will last 70 minutes per day for 12 weeks.
control group
Control group will include about postmenopausal women who will not practice exercise program (aerobic exercise, resistance training and balance exercise) .They will continue to carry out activities of daily living, which are conducted daily before inclusion in the study. These patients will be asked to not include in any other program of physical activity and exercise during the research period (12 weeks). After this period, patients will be offered to participate in the same exercise program that had patients from the experimental group.
exercises
Aerobic exercise will be conducted as a dose walk, 3-5 km / h, lasting 50 minutes per day, least five days per week, for 12 weeks. The intensity of the training will be around 70% of the maximal heart rate.
Resistance training and balance exercises will be conducted as a group program and will involve exercises to strengthen the muscles of the upper and lower extremities and balance exercises. The intensity of the training will be increased on weekly, starting from 3-5 repeating load and its own weight, up to 8-12 repetitions and load straps. Progression and maintenance load tapes will be carried out depending on the capacity of individualized persons. Frequency of training will be 3 times a week,will last 70 minutes per day for 12 weeks.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
exercises
Aerobic exercise will be conducted as a dose walk, 3-5 km / h, lasting 50 minutes per day, least five days per week, for 12 weeks. The intensity of the training will be around 70% of the maximal heart rate.
Resistance training and balance exercises will be conducted as a group program and will involve exercises to strengthen the muscles of the upper and lower extremities and balance exercises. The intensity of the training will be increased on weekly, starting from 3-5 repeating load and its own weight, up to 8-12 repetitions and load straps. Progression and maintenance load tapes will be carried out depending on the capacity of individualized persons. Frequency of training will be 3 times a week,will last 70 minutes per day for 12 weeks.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
50 Years
70 Years
FEMALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Institut za Rehabilitaciju Sokobanjska Beograd
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Tamara Filipovic
Assistant of physical and rehabilitation medicine, Principal investigator
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Tamara Filipovic
Belgrade, , Serbia
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Filipovic T, Gopcevic K, Dimitrijevic S, Hrkovic M, Backovic A, Lazovic M. Effects of 12-Week Exercise Program on Enzyme Activity of Serum Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 in Female Patients with Postmenopausal Osteoporosis: A Randomized Control Study. Biomed Res Int. 2020 Jan 30;2020:9758289. doi: 10.1155/2020/9758289. eCollection 2020.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
: IRehabilitaciju
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.