Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
5 participants
INTERVENTIONAL
2017-11-21
2023-08-27
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Cortical Recording and Stimulating Array Brain-Machine Interface
NCT01894802
Multi-level Approach of Brain Activity Using Intracranial Electrodes in Epileptic Patients
NCT04653012
Microelectrodes in Epilepsy
NCT05200455
Non-invasive Spinal, Cortical, and Sensorimotor Biomarkers in Motor Neurone Disease
NCT06320444
Transcranial Electrical Stimulation Targeting the Cerebellum for the Treatment of Refractory Temporal Lobe Epilepsy
NCT06558890
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
OTHER
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Interventional
Wireless Implantable Neurodevice Microsystem
BrainConnexion
A 4.4mm by 4.2mm electrode array is placed onto the surface of the motor cortex which is then connected to a miniaturized neural recording microsystem that transmits signals wirelessly to control an external assistive device. Neural signals are recorded at least once every week for 12 months or longer.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
BrainConnexion
A 4.4mm by 4.2mm electrode array is placed onto the surface of the motor cortex which is then connected to a miniaturized neural recording microsystem that transmits signals wirelessly to control an external assistive device. Neural signals are recorded at least once every week for 12 months or longer.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Tetraparesis
3. Written informed consent obtained from the patient or legal representative (in the event where the patient is unable to provide consent) prior to entry into the study in accordance with local EC/IRB regulations and/or other application regulations for surrogate consent.
4. Able to perform the pre-operation Brain Computer Interface training as judged by the research team.
Exclusion Criteria
2. Bleeding disorders
3. Any contraindication to surgery
4. Other concomitant intracranial pathologies
5. History of seizures or epilepsy disorder
6. Complications of coagulopathy
7. Surgically unfit
8. Significant psychological issues e.g. Depression
9. Poor psychological support
10. Pregnancy
11. No means of communication
12. Any disease, in the opinion of the Investigator, that is unstable or which could jeopardise the safety of the patient
If applicable, psychological assessment may be performed prior to selection as the implantation process will be a long a stressful event, requiring a significant degree of patient cooperation and resilience.
21 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Institute of Microelectronics
UNKNOWN
Institute of Molecular and Cell Biology
UNKNOWN
Institute for Infocomm Research
OTHER
Nanyang Technological University
OTHER
National Neuroscience Institute
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
National Neuroscience Institute
Singapore, , Singapore
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Libedinsky C, So R, Xu Z, Kyar TK, Ho D, Lim C, Chan L, Chua Y, Yao L, Cheong JH, Lee JH, Vishal KV, Guo Y, Chen ZN, Lim LK, Li P, Liu L, Zou X, Ang KK, Gao Y, Ng WH, Han BS, Chng K, Guan C, Je M, Yen SC. Independent Mobility Achieved through a Wireless Brain-Machine Interface. PLoS One. 2016 Nov 1;11(11):e0165773. doi: 10.1371/journal.pone.0165773. eCollection 2016.
Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970.
Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012 May 16;485(7398):372-5. doi: 10.1038/nature11076.
Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013 Feb 16;381(9866):557-64. doi: 10.1016/S0140-6736(12)61816-9. Epub 2012 Dec 17.
Aflalo T, Kellis S, Klaes C, Lee B, Shi Y, Pejsa K, Shanfield K, Hayes-Jackson S, Aisen M, Heck C, Liu C, Andersen RA. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science. 2015 May 22;348(6237):906-10. doi: 10.1126/science.aaa5417.
Schwarz DA, Lebedev MA, Hanson TL, Dimitrov DF, Lehew G, Meloy J, Rajangam S, Subramanian V, Ifft PJ, Li Z, Ramakrishnan A, Tate A, Zhuang KZ, Nicolelis MA. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat Methods. 2014 Jun;11(6):670-6. doi: 10.1038/nmeth.2936. Epub 2014 Apr 28.
Yin M, Borton DA, Komar J, Agha N, Lu Y, Li H, Laurens J, Lang Y, Li Q, Bull C, Larson L, Rosler D, Bezard E, Courtine G, Nurmikko AV. Wireless neurosensor for full-spectrum electrophysiology recordings during free behavior. Neuron. 2014 Dec 17;84(6):1170-82. doi: 10.1016/j.neuron.2014.11.010. Epub 2014 Dec 4.
Zaaroor M, Kosa G, Peri-Eran A, Maharil I, Shoham M, Goldsher D. Morphological study of the spinal canal content for subarachnoid endoscopy. Minim Invasive Neurosurg. 2006 Aug;49(4):220-6. doi: 10.1055/s-2006-948000.
Lee, K., Singh, A., He, J., Massia, S., Kim, B., & Raupp, G. (2004). Polyimide based neural implants with stiffness improvement. Sensors Actuators B Chem,102(1), 67-72. doi: 10.1016/j.snb.2003.10.018.
Cheng, M. Y., Je, M., Tan, K. L., et al. (2013). A low-profile three-dimensional neural probe array using a silicon lead transfer structure. J Micromechanics Microengineering, 23(9), 095013. doi:10.1088/0960-1317/23/9/095013.
Cheng, M. Y., Yao, L., Tan, K. L., Lim, R., Li, P., & Chen, W. (2014). 3D probe array integrated with a front-end 100-channel neural recording ASIC. J Micromechanics Microengineering, 24(12), 125010. doi:10.1088/0960-1317/24/12/125010.
Zou, X., Liu, L., Cheong, J. H., et al. (2013). A 100-Channel 1-mW implantable neural recording IC. IEEE Trans Circuits Syst I Regul Pap, 60(10), 2584-2596. doi:10.1109/TCSI.2013.2249175.
Christopher and Dana Reeve Foundation. Christopher and Dana Reeve Foundation. https://www.christopherreeve.org/. Published 2016.
Technical specifications for short range devices - Issue 1 Rev 7, Apr 2013. https://www.ida.gov.sg/~/media/Files/PCDG/Licensees/StandardsQoS/RadiocomEquipStd/TSSRD.pdf
Liu X, Zhou J, Wang C, et al. An Ultralow-Voltage Sensor Node Processor With Diverse Hardware Acceleration and Cognitive Sampling for Intelligent Sensing. IEEE Trans Circuits Syst II Express Briefs. 2015;62(12):1149-1153. doi:10.1109/TCSII.2015.2468927.
Rebsamen B, Guan C, Zhang H, Wang C, Teo C, Ang MH Jr, Burdet E. A brain controlled wheelchair to navigate in familiar environments. IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):590-8. doi: 10.1109/TNSRE.2010.2049862. Epub 2010 May 10.
Rosa So, Libedinsky C, Kai Keng Ang, Wee Chiek Clement Lim, Kyaw Kyar Toe, Cuntai Guan. Adaptive decoding using local field potentials in a brain-machine interface. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5721-5724. doi: 10.1109/EMBC.2016.7592026.
So RQ, Xu Z, Libedinsky C., Ang KK, Toe KK, Yen SC, Guan CT (2015) Neural Representations of Movement during Brain-Controlled Self-Motion. Conf Proc 7th International IEEE EMBS Conference on Neural Engineering.
Xu Z, Guan CT, So RQ, Ang KK, Toe KK. (2015) Motor Cortical Adaptation Induced by Closed-Loop BCI. Conf Proc 7th International IEEE EMBS Conference on Neural Engineering.
Xu Z, So RQ, Toe KK, Ang KK, Guan C. On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3049-52. doi: 10.1109/EMBC.2014.6944266.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
BrainConnexion
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.