Genetic-specific Effects of Fructose on Liver Lipogenesis
NCT ID: NCT03783195
Last Updated: 2024-10-23
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
15 participants
INTERVENTIONAL
2019-01-25
2023-04-25
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
1. To determine the impact of prolonged exposure of fructose on hepatic lipid accumulation in Caucasian individuals with high and low genetic risk for NAFLD,
2. to determine the impact of acute exposure of fructose on hepatic DNL, and
3. to determine the relationship between markers of DNL, liver fat accumulation and serum concentrations of lipids, uric acid and liver function markers before and after the fructose challenge.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effect of Dietary Fat When Eaten With Fructose Versus Glucose
NCT01061346
Effects of Fructose Restriction on Liver Steatosis
NCT03067428
Effects of Dietary Fructose Reduction in Children With Hepatic Steatosis
NCT01188083
The Metabolic Effects of a High Fructose Versus a High Glucose Diet in Overweight Men
NCT01050140
Acute Effect of Fructose on Lipid Metabolism and Gender Differences
NCT00620360
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Both genetic and environmental, including nutritional, factors contribute to the onset and progression of NAFLD. Increased consumption of sugar-sweetened, fructose-rich beverages has been linked to NAFLD. Fructose, commonly found in soft drinks, fruit juices and energy drinks, affects many metabolic processes, foremost being an increase in fat accumulation in the liver and hence, NAFLD. Genome-wide and candidate gene studies have identified several genes associated with NAFLD. However, none of these studies have shown the cumulative effects of single nucleotide polymorphisms (SNPs) on changes in liver fat when exposed to fructose. The results from this study can be extrapolated to larger cohorts and other ethnicities and are therefore, expected to lay the foundation for developing personalized nutritional plans.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
High GRS group
This group consists of individuals who are in the highest quartile of the genetic risk score (GRS) and will ingest one sugar drink (equal to 2 soft drinks) per day for 3 weeks. The GRS is computed by adding the number of alleles that increase the risk for liver lipogenesis or fatty liver.
Sugar drink
A sugar drink made with 1.2 g/kg body weight of added sugar( 0.75g/kg body weight of fructose + 0.45g/kg body weight of glucose) and 24oz water
Low GRS group
This groups consists of individuals who are in the lowest quartile of the genetic risk score (GRS) and will ingest one sugar drink (equal to 2 soft drinks) per day for 3 weeks. The GRS is computed by adding the number of alleles that increase the risk for liver lipogenesis or fatty liver.
Sugar drink
A sugar drink made with 1.2 g/kg body weight of added sugar( 0.75g/kg body weight of fructose + 0.45g/kg body weight of glucose) and 24oz water
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Sugar drink
A sugar drink made with 1.2 g/kg body weight of added sugar( 0.75g/kg body weight of fructose + 0.45g/kg body weight of glucose) and 24oz water
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. No history of alcohol abuse (\> 7 drinks per week)
3. History of fructose intake of \< 14 drinks per week
4. Caucasian ethnicity
5. BMI \> 25kg/m² - 32kg/m² or 85th -99th percentile but otherwise healthy
Exclusion Criteria
2. Pregnant/lactating
3. known alcohol abuse or fructose intake \> 14 drinks per week
4. not of Caucasian ethnicity
5. glucose levels \> 100 mg/dL if fasting, \> 140mg/dL if within 2 hours post meal and \> 200 mg/dL if random sample
6. taking anti-hypertensive, anti-diabetic, uric acid and/or lipid-lowering medications
7. known diagnosis of diabetes, fructose intolerance, chronic kidney disease, NAFLD or any liver-related disease, hypertriglyceridemia, polycystic ovary syndrome, hypothyroidism, obstructive sleep apnea, hypopituitarism and hypogonadism
8. BMI \< 25kg/m² or \> 32 kg/m² or \< 85th or \> 99th percentile
9. Liver fat fraction \>5% as per baseline MRI scan
12 Years
40 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
NIH
University of North Carolina, Chapel Hill
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Saroja Voruganti
Role: PRINCIPAL_INVESTIGATOR
University of North Carolina, Chapel Hill
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
UNC Nutrition Research Institute
Kannapolis, North Carolina, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y, Racila A, Hunt S, Beckerman R. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016 Nov;64(5):1577-1586. doi: 10.1002/hep.28785. Epub 2016 Sep 26.
Vos MB, Kimmons JE, Gillespie C, Welsh J, Blanck HM. Dietary fructose consumption among US children and adults: the Third National Health and Nutrition Examination Survey. Medscape J Med. 2008 Jul 9;10(7):160.
Moore JB, Gunn PJ, Fielding BA. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients. 2014 Dec 10;6(12):5679-703. doi: 10.3390/nu6125679.
Faeh D, Minehira K, Schwarz JM, Periasamy R, Park S, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes. 2005 Jul;54(7):1907-13. doi: 10.2337/diabetes.54.7.1907.
Alwahsh SM, Gebhardt R. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol. 2017 Apr;91(4):1545-1563. doi: 10.1007/s00204-016-1892-7. Epub 2016 Dec 19.
Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W, McGahan JP, Seibert A, Krauss RM, Chiu S, Schaefer EJ, Ai M, Otokozawa S, Nakajima K, Nakano T, Beysen C, Hellerstein MK, Berglund L, Havel PJ. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009 May;119(5):1322-34. doi: 10.1172/JCI37385. Epub 2009 Apr 20.
Stanhope KL, Medici V, Bremer AA, Lee V, Lam HD, Nunez MV, Chen GX, Keim NL, Havel PJ. A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am J Clin Nutr. 2015 Jun;101(6):1144-54. doi: 10.3945/ajcn.114.100461. Epub 2015 Apr 22.
Softic S, Gupta MK, Wang GX, Fujisaka S, O'Neill BT, Rao TN, Willoughby J, Harbison C, Fitzgerald K, Ilkayeva O, Newgard CB, Cohen DE, Kahn CR. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest. 2017 Nov 1;127(11):4059-4074. doi: 10.1172/JCI94585. Epub 2017 Oct 3.
Basaranoglu M, Basaranoglu G, Bugianesi E. Carbohydrate intake and nonalcoholic fatty liver disease: fructose as a weapon of mass destruction. Hepatobiliary Surg Nutr. 2015 Apr;4(2):109-16. doi: 10.3978/j.issn.2304-3881.2014.11.05.
Johnson RJ, Nakagawa T, Sanchez-Lozada LG, Shafiu M, Sundaram S, Le M, Ishimoto T, Sautin YY, Lanaspa MA. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013 Oct;62(10):3307-15. doi: 10.2337/db12-1814.
Zhou Y, Wei F, Fan Y. High serum uric acid and risk of nonalcoholic fatty liver disease: A systematic review and meta-analysis. Clin Biochem. 2016 May;49(7-8):636-42. doi: 10.1016/j.clinbiochem.2015.12.010. Epub 2015 Dec 29.
Goran MI, Walker R, Allayee H. Genetic-related and carbohydrate-related factors affecting liver fat accumulation. Curr Opin Clin Nutr Metab Care. 2012 Jul;15(4):392-6. doi: 10.1097/MCO.0b013e3283544477.
Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, Gudnason V, Eiriksdottir G, Garcia ME, Launer LJ, Nalls MA, Clark JM, Mitchell BD, Shuldiner AR, Butler JL, Tomas M, Hoffmann U, Hwang SJ, Massaro JM, O'Donnell CJ, Sahani DV, Salomaa V, Schadt EE, Schwartz SM, Siscovick DS; NASH CRN; GIANT Consortium; MAGIC Investigators; Voight BF, Carr JJ, Feitosa MF, Harris TB, Fox CS, Smith AV, Kao WH, Hirschhorn JN, Borecki IB; GOLD Consortium. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011 Mar;7(3):e1001324. doi: 10.1371/journal.pgen.1001324. Epub 2011 Mar 10.
Davis JN, Le KA, Walker RW, Vikman S, Spruijt-Metz D, Weigensberg MJ, Allayee H, Goran MI. Increased hepatic fat in overweight Hispanic youth influenced by interaction between genetic variation in PNPLA3 and high dietary carbohydrate and sugar consumption. Am J Clin Nutr. 2010 Dec;92(6):1522-7. doi: 10.3945/ajcn.2010.30185. Epub 2010 Oct 20.
Santoro N, Caprio S, Pierpont B, Van Name M, Savoye M, Parks EJ. Hepatic De Novo Lipogenesis in Obese Youth Is Modulated by a Common Variant in the GCKR Gene. J Clin Endocrinol Metab. 2015 Aug;100(8):E1125-32. doi: 10.1210/jc.2015-1587. Epub 2015 Jun 4.
Ter Horst KW, Schene MR, Holman R, Romijn JA, Serlie MJ. Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: a systematic review and meta-analysis of diet-intervention trials. Am J Clin Nutr. 2016 Dec;104(6):1562-1576. doi: 10.3945/ajcn.116.137786. Epub 2016 Nov 9.
Schwarz JM, Noworolski SM, Erkin-Cakmak A, Korn NJ, Wen MJ, Tai VW, Jones GM, Palii SP, Velasco-Alin M, Pan K, Patterson BW, Gugliucci A, Lustig RH, Mulligan K. Effects of Dietary Fructose Restriction on Liver Fat, De Novo Lipogenesis, and Insulin Kinetics in Children With Obesity. Gastroenterology. 2017 Sep;153(3):743-752. doi: 10.1053/j.gastro.2017.05.043. Epub 2017 Jun 1.
Stanhope KL, Bremer AA, Medici V, Nakajima K, Ito Y, Nakano T, Chen G, Fong TH, Lee V, Menorca RI, Keim NL, Havel PJ. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J Clin Endocrinol Metab. 2011 Oct;96(10):E1596-605. doi: 10.1210/jc.2011-1251. Epub 2011 Aug 17.
Schwarz JM, Noworolski SM, Wen MJ, Dyachenko A, Prior JL, Weinberg ME, Herraiz LA, Tai VW, Bergeron N, Bersot TP, Rao MN, Schambelan M, Mulligan K. Effect of a High-Fructose Weight-Maintaining Diet on Lipogenesis and Liver Fat. J Clin Endocrinol Metab. 2015 Jun;100(6):2434-42. doi: 10.1210/jc.2014-3678. Epub 2015 Mar 31.
Ventura EE, Davis JN, Goran MI. Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content. Obesity (Silver Spring). 2011 Apr;19(4):868-74. doi: 10.1038/oby.2010.255. Epub 2010 Oct 14.
Akhavan T, Anderson GH. Effects of glucose-to-fructose ratios in solutions on subjective satiety, food intake, and satiety hormones in young men. Am J Clin Nutr. 2007 Nov;86(5):1354-63. doi: 10.1093/ajcn/86.5.1354.
Faix D, Neese R, Kletke C, Wolden S, Cesar D, Coutlangus M, Shackleton CH, Hellerstein MK. Quantification of menstrual and diurnal periodicities in rates of cholesterol and fat synthesis in humans. J Lipid Res. 1993 Dec;34(12):2063-75.
Hudgins LC, Parker TS, Levine DM, Hellerstein MK. A dual sugar challenge test for lipogenic sensitivity to dietary fructose. J Clin Endocrinol Metab. 2011 Mar;96(3):861-8. doi: 10.1210/jc.2010-2007. Epub 2011 Jan 20.
Awai HI, Newton KP, Sirlin CB, Behling C, Schwimmer JB. Evidence and recommendations for imaging liver fat in children, based on systematic review. Clin Gastroenterol Hepatol. 2014 May;12(5):765-73. doi: 10.1016/j.cgh.2013.09.050. Epub 2013 Sep 30.
Shin HJ, Kim HG, Kim MJ, Koh H, Kim HY, Roh YH, Lee MJ. Normal range of hepatic fat fraction on dual- and triple-echo fat quantification MR in children. PLoS One. 2015 Feb 6;10(2):e0117480. doi: 10.1371/journal.pone.0117480. eCollection 2015.
Bonder A, Afdhal N. Utilization of FibroScan in clinical practice. Curr Gastroenterol Rep. 2014 Feb;16(2):372. doi: 10.1007/s11894-014-0372-6.
Lallukka S, Sadevirta S, Kallio MT, Luukkonen PK, Zhou Y, Hakkarainen A, Lundbom N, Orho-Melander M, Yki-Jarvinen H. Predictors of Liver Fat and Stiffness in Non-Alcoholic Fatty Liver Disease (NAFLD) - an 11-Year Prospective Study. Sci Rep. 2017 Nov 6;7(1):14561. doi: 10.1038/s41598-017-14706-0.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Document Type: Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
17-3348
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.