Transcranial Magnetic Stimulation and Constraint Induced Language Therapy for Chronic Aphasia

NCT ID: NCT03651700

Last Updated: 2025-10-14

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

PHASE2

Total Enrollment

86 participants

Study Classification

INTERVENTIONAL

Study Start Date

2019-03-28

Study Completion Date

2024-08-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Transcranial Magnetic Stimulation (TMS) has been demonstrated to improve language function in subjects with chronic aphasia in a number of small studies, many of which did not include a control group. Although the treatment appears promising, data to date do not permit an adequate assessment of the utility of the technique. The investigators propose to study the effects of TMS combined with Constraint Induced Language Therapy (CILT) in 75 subjects with chronic aphasia. Subjects will be randomized in a 2:1 ratio to TMS with CILT or sham TMS with CILT. One Hz TMS at 90% motor threshold will be delivered to the right inferior frontal gyrus for 20 minutes in 10 sessions over 2 weeks; language therapy will be provided for one hour immediately after the conclusion of each session of TMS. Change from baseline in the Western Aphasia Battery Aphasia Quotient at 6 months after the end of TMS treatment will serve as the primary outcome measure.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

TMS is a technique by which a brief electrical current is induced in brain tissue causing a brief suppression of the excitability of the underlying tissue; the technique, which was introduced in the 1980s and has been extensively used around the world, has been shown to transiently improve or disrupt specific cognitive operations. To achieve this end, a coil is positioned against the subject's head. The delivery of a single pulse begins with the discharge of current from a capacitor into a circular or figure-of-eight coil; this electrical current generates a brief magnetic field of up to 2.2 Tesla. As the pulse of electricity has a rise time of 0.2 ms. and a duration of 1 ms., the magnetic field changes in intensity quite rapidly. Because the magnetic field passes freely through the scalp, skull, and meninges, the flux in the magnetic field induces a small electric field in the brain that transiently alters neural activity.

TMS may be delivered in a variety of ways. The investigators propose to use 1 Hz TMS; that is, TMS pulses will be delivered at a frequency of 1/second. This style of TMS is assumed to be inhibitory in that it transiently suppresses the function of the cortex under the coil. Using the figure-of-eight coil to be employed here, TMS is thought to reduce activity in approximately 1 cubic cm. of cortex. Many investigators have employed TMS with a frequency of 1 Hz for periods of 20 minutes and longer; mild behavioral deficits are often present for several minutes in these studies.

The baseline phase will consist of 3 sessions, each lasting 1-2 hours depending on the stamina of the subject. The point of the baseline testing is to characterize the subject's language function. To that end, a number of standard language and neuropsychological tasks will be administered. These include the Western Aphasia Battery, Pyramids and Palm Trees test, Figural Fluency Test, word and non-word repetition tasks, the Nicholas and Brookshire Narratives, CILT stimulus naming, and Northwestern Assessment of Verbs and Sentences. Additionally, during the baseline, subjects will undergo MRI of the brain or, if they have a contraindication to MRI, a CAT scan of the head. No contrast will be used.

In the treatment phase, there will be 10 TMS sessions over 2 consecutive weeks in which 20 minutes (1200 pulses) of 1 Hz TMS at 90% motor threshold will be delivered to the inferior pars triangularis. Each TMS treatment session will be immediately followed by a 60-90 minute session of CILT

There will be two 3-month post-treatment visits and two 6-month post-treatment visits in which the full battery of language and cognitive assessments will be repeated. Subjects who are able to undergo MRI scanning will have anatomic and fMRI scans at the first 6-month post-treatment visit.

The investigators will pair TMS with CILT which has been shown to have positive outcomes in post-stroke aphasia. CILT invokes use-dependent learning in communicative interactions by requiring spoken output and restricting use of alternative forms of communication, such as gestures. The investigators will use a dual card-matching task modeled after Maher et al. As in the original CILT design, the participant interacts verbally with a conversational partner (here, the speech language pathologist), in turn requesting a card of given description and complying with the partner's request. In this way, the treatment targets both production and comprehension. Moreover, as verbal targets increase in linguistic complexity across the protocol ("a ball", "throw a ball"; "Do you have a ball"?), a variety of lexical and phrasal structures are targeted. Studies of CILT have reported gains on multiple language behaviors, supporting its broad engagement of the language network.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Aphasia

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Participants will be randomized to either TMS or sham TMS in a 2:1 allocation ratio.
Primary Study Purpose

TREATMENT

Blinding Strategy

QUADRUPLE

Participants Caregivers Investigators Outcome Assessors
The individual administering TMS will keep the master file of subject assignments, but all other individuals in contact with the subject or their data will be unaware of group assignment. Participants will not be informed of their assignment to active or sham status.

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Active TMS

There will be 10 TMS sessions over 2 consecutive weeks in which 20 minutes (1200 pulses) of 1 Hz active TMS will be delivered to the inferior pars triangular. Each TMS treatment session will be immediately followed by a 60-90 minute session of Constrained Induced Language Therapy (CILT).

Group Type ACTIVE_COMPARATOR

Active TMS

Intervention Type DEVICE

Active TMS will be at 90% motor threshold

CILT

Intervention Type BEHAVIORAL

60-90 minutes of CILT will be administered during each treatment session

Sham TMS

There will be 10 TMS sessions over 2 consecutive weeks in which 20 minutes (1200 pulses) of 1 Hz sham TMS will be delivered to the inferior pars triangular. Sham TMS will be administered with a sham TMS coil that looks and sounds like the active coil but does not generate a magnetic field. Each TMS treatment session will be immediately followed by a 60-90 minute session of Constrained Induced Language Therapy (CILT).

Group Type SHAM_COMPARATOR

Sham TMS

Intervention Type DEVICE

Sham TMS will be administered

CILT

Intervention Type BEHAVIORAL

60-90 minutes of CILT will be administered during each treatment session

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Active TMS

Active TMS will be at 90% motor threshold

Intervention Type DEVICE

Sham TMS

Sham TMS will be administered

Intervention Type DEVICE

CILT

60-90 minutes of CILT will be administered during each treatment session

Intervention Type BEHAVIORAL

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Constraint Induced Language Therapy

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Clinical evidence and MRI or CT verification of a single left hemisphere stroke with moderate to severe aphasia.
* Suffered their stroke at least 6 months prior to their testing
* Must be able to understand the nature of the study, and give informed consent

Exclusion Criteria

* Multiple strokes (excluding small lacunar strokes) as defined by brain imaging
* History of substance abuse
* Previous head trauma with loss of consciousness for more than 5 minutes
* Psychiatric illness (We note that subjects will be assessed with the 15-item Geriatric Depression scale. Because depression is very difficult to evaluate in aphasic subjects, potential subjects will not be excluded on the basis of the depression score)
* Chronic exposure to medications that might be expected to have lasting consequences for the central nervous system (e.g. haloperidol, dopaminergics)
* History of or neuropsychological findings suggestive of dementia
Minimum Eligible Age

18 Years

Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Institutes of Health (NIH)

NIH

Sponsor Role collaborator

National Institute on Deafness and Other Communication Disorders (NIDCD)

NIH

Sponsor Role collaborator

H. Branch Coslett

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

H. Branch Coslett

Professor

Responsibility Role SPONSOR_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

H. Branch Coslett, MD

Role: PRINCIPAL_INVESTIGATOR

University of Pennsylvania

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Pennsylvania

Philadelphia, Pennsylvania, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Shewan CM, Kertesz A. Reliability and validity characteristics of the Western Aphasia Battery (WAB). J Speech Hear Disord. 1980 Aug;45(3):308-24. doi: 10.1044/jshd.4503.308.

Reference Type BACKGROUND
PMID: 7412225 (View on PubMed)

Howard, D., & Patterson, K. E. (1992). The Pyramids and Palm Trees Test: A Test of Semantic Access from Words and Pictures. Thames Valley Test Company. Retrieved from books.google.com/books?id=dykONQAACAAJ

Reference Type BACKGROUND

Ruff, R. M. (1996). Ruff figural fluency test: professional manual. Psychological Assessment Resources.

Reference Type BACKGROUND

Nicholas LE, Brookshire RH. A system for quantifying the informativeness and efficiency of the connected speech of adults with aphasia. J Speech Hear Res. 1993 Apr;36(2):338-50. doi: 10.1044/jshr.3602.338.

Reference Type BACKGROUND
PMID: 8487525 (View on PubMed)

Pulvermuller F, Neininger B, Elbert T, Mohr B, Rockstroh B, Koebbel P, Taub E. Constraint-induced therapy of chronic aphasia after stroke. Stroke. 2001 Jul;32(7):1621-6. doi: 10.1161/01.str.32.7.1621.

Reference Type BACKGROUND
PMID: 11441210 (View on PubMed)

Maher LM, Kendall D, Swearengin JA, Rodriguez A, Leon SA, Pingel K, Holland A, Rothi LJ. A pilot study of use-dependent learning in the context of Constraint Induced Language Therapy. J Int Neuropsychol Soc. 2006 Nov;12(6):843-52. doi: 10.1017/S1355617706061029.

Reference Type BACKGROUND
PMID: 17064447 (View on PubMed)

Barthel, G., Meinzer, M., Djundja, D., & Rockstroh, B. (2008). Intensive language therapy in chronic aphasia: Which aspects contribute most? Aphasiology, 22(4), 408-421.

Reference Type BACKGROUND

Goral M, Kempler D. TRAINING VERB PRODUCTION IN COMMUNICATIVE CONTEXT: EVIDENCE FROM A PERSON WITH CHRONIC NON-FLUENT APHASIA. Aphasiology. 2009 Dec 12;23(12):1383-1397. doi: 10.1080/02687030802235203.

Reference Type BACKGROUND
PMID: 19911035 (View on PubMed)

Meinzer M, Rodriguez AD, Gonzalez Rothi LJ. First decade of research on constrained-induced treatment approaches for aphasia rehabilitation. Arch Phys Med Rehabil. 2012 Jan;93(1 Suppl):S35-45. doi: 10.1016/j.apmr.2011.06.040.

Reference Type BACKGROUND
PMID: 22202189 (View on PubMed)

Abo M, Kakuda W, Watanabe M, Morooka A, Kawakami K, Senoo A. Effectiveness of low-frequency rTMS and intensive speech therapy in poststroke patients with aphasia: a pilot study based on evaluation by fMRI in relation to type of aphasia. Eur Neurol. 2012;68(4):199-208. doi: 10.1159/000338773. Epub 2012 Aug 29.

Reference Type BACKGROUND
PMID: 22948550 (View on PubMed)

Avenanti A, Coccia M, Ladavas E, Provinciali L, Ceravolo MG. Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: a randomized trial. Neurology. 2012 Jan 24;78(4):256-64. doi: 10.1212/WNL.0b013e3182436558. Epub 2012 Jan 11.

Reference Type BACKGROUND
PMID: 22238412 (View on PubMed)

Barwood CH, Murdoch BE, Riek S, O'Sullivan JD, Wong A, Lloyd D, Coulthard A. Long term language recovery subsequent to low frequency rTMS in chronic non-fluent aphasia. NeuroRehabilitation. 2013;32(4):915-28. doi: 10.3233/NRE-130915.

Reference Type BACKGROUND
PMID: 23867417 (View on PubMed)

Barwood CHS, Murdoch BE, Whelan BM, Lloyd D, Riek S, O'Sullivan JD, Coulthard A, Wong A. Improved receptive and expressive language abilities in nonfluent aphasic stroke patients after application of rTMS: an open protocol case series. Brain Stimul. 2012 Jul;5(3):274-286. doi: 10.1016/j.brs.2011.03.005. Epub 2011 Apr 13.

Reference Type BACKGROUND
PMID: 22037124 (View on PubMed)

Hamilton RH, Sanders L, Benson J, Faseyitan O, Norise C, Naeser M, Martin P, Coslett HB. Stimulating conversation: enhancement of elicited propositional speech in a patient with chronic non-fluent aphasia following transcranial magnetic stimulation. Brain Lang. 2010 Apr;113(1):45-50. doi: 10.1016/j.bandl.2010.01.001. Epub 2010 Feb 16.

Reference Type BACKGROUND
PMID: 20159655 (View on PubMed)

Hara T, Abo M, Kobayashi K, Watanabe M, Kakuda W, Senoo A. Effects of low-frequency repetitive transcranial magnetic stimulation combined with intensive speech therapy on cerebral blood flow in post-stroke aphasia. Transl Stroke Res. 2015 Oct;6(5):365-74. doi: 10.1007/s12975-015-0417-7. Epub 2015 Aug 7.

Reference Type BACKGROUND
PMID: 26245774 (View on PubMed)

Kakuda W, Abo M, Momosaki R, Morooka A. Therapeutic application of 6-Hz-primed low-frequency rTMS combined with intensive speech therapy for post-stroke aphasia. Brain Inj. 2011;25(12):1242-8. doi: 10.3109/02699052.2011.608212. Epub 2011 Sep 8.

Reference Type BACKGROUND
PMID: 21902549 (View on PubMed)

Kakuda W, Abo M, Shimizu M, Sasanuma J, Okamoto T, Yokoi A, Taguchi K, Mitani S, Harashima H, Urushidani N, Urashima M; NEURO Investigators. A multi-center study on low-frequency rTMS combined with intensive occupational therapy for upper limb hemiparesis in post-stroke patients. J Neuroeng Rehabil. 2012 Jan 20;9(1):4. doi: 10.1186/1743-0003-9-4.

Reference Type BACKGROUND
PMID: 22264239 (View on PubMed)

Kakuda W, Abo M, Uruma G, Kaito N, Watanabe M. Low-frequency rTMS with language therapy over a 3-month period for sensory-dominant aphasia: case series of two post-stroke Japanese patients. Brain Inj. 2010;24(9):1113-7. doi: 10.3109/02699052.2010.494587.

Reference Type BACKGROUND
PMID: 20569046 (View on PubMed)

Khedr EM, Abo El-Fetoh N, Ali AM, El-Hammady DH, Khalifa H, Atta H, Karim AA. Dual-hemisphere repetitive transcranial magnetic stimulation for rehabilitation of poststroke aphasia: a randomized, double-blind clinical trial. Neurorehabil Neural Repair. 2014 Oct;28(8):740-50. doi: 10.1177/1545968314521009. Epub 2014 Feb 6.

Reference Type BACKGROUND
PMID: 24503205 (View on PubMed)

Kindler J, Schumacher R, Cazzoli D, Gutbrod K, Koenig M, Nyffeler T, Dierks T, Muri RM. Theta burst stimulation over the right Broca's homologue induces improvement of naming in aphasic patients. Stroke. 2012 Aug;43(8):2175-9. doi: 10.1161/STROKEAHA.111.647503. Epub 2012 May 10.

Reference Type BACKGROUND
PMID: 22581821 (View on PubMed)

Martin PI, Naeser MA, Ho M, Treglia E, Kaplan E, Baker EH, Pascual-Leone A. Research with transcranial magnetic stimulation in the treatment of aphasia. Curr Neurol Neurosci Rep. 2009 Nov;9(6):451-8. doi: 10.1007/s11910-009-0067-9.

Reference Type BACKGROUND
PMID: 19818232 (View on PubMed)

Martin PI, Naeser MA, Theoret H, Tormos JM, Nicholas M, Kurland J, Fregni F, Seekins H, Doron K, Pascual-Leone A. Transcranial magnetic stimulation as a complementary treatment for aphasia. Semin Speech Lang. 2004 May;25(2):181-91. doi: 10.1055/s-2004-825654.

Reference Type BACKGROUND
PMID: 15118944 (View on PubMed)

Martin PI, Treglia E, Naeser MA, Ho MD, Baker EH, Martin EG, Bashir S, Pascual-Leone A. Language improvements after TMS plus modified CILT: Pilot, open-protocol study with two, chronic nonfluent aphasia cases. Restor Neurol Neurosci. 2014;32(4):483-505. doi: 10.3233/RNN-130365.

Reference Type BACKGROUND
PMID: 25015701 (View on PubMed)

Medina J, Norise C, Faseyitan O, Coslett HB, Turkeltaub PE, Hamilton RH. Finding the Right Words: Transcranial Magnetic Stimulation Improves Discourse Productivity in Non-fluent Aphasia After Stroke. Aphasiology. 2012 Sep 1;26(9):1153-1168. doi: 10.1080/02687038.2012.710316. Epub 2012 Aug 29.

Reference Type BACKGROUND
PMID: 23280015 (View on PubMed)

Naeser MA, Martin PI, Lundgren K, Klein R, Kaplan J, Treglia E, Ho M, Nicholas M, Alonso M, Pascual-Leone A. Improved language in a chronic nonfluent aphasia patient after treatment with CPAP and TMS. Cogn Behav Neurol. 2010 Mar;23(1):29-38. doi: 10.1097/WNN.0b013e3181bf2d20.

Reference Type BACKGROUND
PMID: 20299861 (View on PubMed)

Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Helm-Estabrooks N, Cayer-Meade C, Kobayashi M, Theoret H, Fregni F, Tormos JM, Kurland J, Doron KW, Pascual-Leone A. Improved naming after TMS treatments in a chronic, global aphasia patient--case report. Neurocase. 2005 Jun;11(3):182-93. doi: 10.1080/13554790590944663.

Reference Type BACKGROUND
PMID: 16006338 (View on PubMed)

Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Kobayashi M, Theoret H, Fregni F, Maria-Tormos J, Kurland J, Doron KW, Pascual-Leone A. Improved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study. Brain Lang. 2005 Apr;93(1):95-105. doi: 10.1016/j.bandl.2004.08.004.

Reference Type BACKGROUND
PMID: 15766771 (View on PubMed)

Naeser MA, Martin PI, Theoret H, Kobayashi M, Fregni F, Nicholas M, Tormos JM, Steven MS, Baker EH, Pascual-Leone A. TMS suppression of right pars triangularis, but not pars opercularis, improves naming in aphasia. Brain Lang. 2011 Dec;119(3):206-13. doi: 10.1016/j.bandl.2011.07.005. Epub 2011 Aug 23.

Reference Type BACKGROUND
PMID: 21864891 (View on PubMed)

Seniow J, Waldowski K, Lesniak M, Iwanski S, Czepiel W, Czlonkowska A. Transcranial magnetic stimulation combined with speech and language training in early aphasia rehabilitation: a randomized double-blind controlled pilot study. Top Stroke Rehabil. 2013 May-Jun;20(3):250-61. doi: 10.1310/tsr2003-250.

Reference Type BACKGROUND
PMID: 23841973 (View on PubMed)

Szaflarski JP, Vannest J, Wu SW, DiFrancesco MW, Banks C, Gilbert DL. Excitatory repetitive transcranial magnetic stimulation induces improvements in chronic post-stroke aphasia. Med Sci Monit. 2011 Feb 25;17(3):CR132-9. doi: 10.12659/msm.881446.

Reference Type BACKGROUND
PMID: 21358599 (View on PubMed)

Thiel A, Hartmann A, Rubi-Fessen I, Anglade C, Kracht L, Weiduschat N, Kessler J, Rommel T, Heiss WD. Effects of noninvasive brain stimulation on language networks and recovery in early poststroke aphasia. Stroke. 2013 Aug;44(8):2240-6. doi: 10.1161/STROKEAHA.111.000574. Epub 2013 Jun 27.

Reference Type BACKGROUND
PMID: 23813984 (View on PubMed)

Waldowski K, Seniow J, Lesniak M, Iwanski S, Czlonkowska A. Effect of low-frequency repetitive transcranial magnetic stimulation on naming abilities in early-stroke aphasic patients: a prospective, randomized, double-blind sham-controlled study. ScientificWorldJournal. 2012;2012:518568. doi: 10.1100/2012/518568. Epub 2012 Nov 20.

Reference Type BACKGROUND
PMID: 23213288 (View on PubMed)

Weiduschat N, Thiel A, Rubi-Fessen I, Hartmann A, Kessler J, Merl P, Kracht L, Rommel T, Heiss WD. Effects of repetitive transcranial magnetic stimulation in aphasic stroke: a randomized controlled pilot study. Stroke. 2011 Feb;42(2):409-15. doi: 10.1161/STROKEAHA.110.597864. Epub 2010 Dec 16.

Reference Type BACKGROUND
PMID: 21164121 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

R01DC016800

Identifier Type: NIH

Identifier Source: secondary_id

View Link

831532-chbdfejh

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Core Semantic Systems TMS
NCT06870552 RECRUITING NA
rTMS as a Treatment for PPA
NCT03406429 COMPLETED EARLY_PHASE1