Immersive Virtual Reality in Mechanically Ventilated Patients
NCT ID: NCT03569358
Last Updated: 2019-02-04
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
40 participants
INTERVENTIONAL
2018-07-02
2019-07-02
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The investigators propose a preliminary study for the evaluation of safety, tolerability, and early efficacy of immersive virtual reality for early neurocognitive stimulation in critically-ill, mechanically ventilated patients. The investigators hypothesize that the use of IVR technology for early neurocognitive simulation is safe and tolerable in these patients. This study will also evaluate whether early application of IVR in critically ill, mechanically ventilated subjects, can provide neurocognitive stimulation.
30 patients admitted to the intensive care unit for acute respiratory failure or septic shock will be evaluated for recruitment. 10 patients will be in the control group and 20 patients would have 2 sessions of IVR planned daily for a maximum of 3 days. Assessment of safety will involve monitoring for physiological derangements in heart rate, respiratory rate, pulse oximetry and blood pressure during the IVR session. Assessment of tolerability will involve monitoring for increased agitation. Assessment of early efficacy will involve evaluation of visual attention during the IVR session. 5-channel electroencephalogram would aim to detect objective changes in visual event-related potentials and the IVR headgear will incorporate eye-tracking technology.
To conclude, should IVR be feasible and safe, future interventional studies may be planned to investigate its impact on reduction in the use of sedatives, analgesia, delirium incidence and severity of cognitive impairment associated with critical illness.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Virtual Reality Stimulation to Enhance Cognitive Function of Intensive Care Unit Patients
NCT03025373
Virtual Reality Cognitive Training for Mild Cognitive Impairment
NCT06380894
VR Collaboration System to Improve Mental Health Outcomes
NCT05773131
Immersive Virtual Reality for Dual-task Training in Older Adults With Mild Cognitive Impairment: A Randomized Controlled Trial
NCT05730790
Effects and Mechanism of the Fully Immersive Virtual Reality Cognitive Training Based on Leisure Activities
NCT05682469
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Critical care societies have endorsed the use of care bundles for pain, agitation and delirium management. Few specialised centres with dedicated survivor clinics evaluate functional impairment via diagnostic investigations, physical, neurological examinations and psychological assessments, to provide personalised rehabilitation. While these initiatives have been shown to improve patient satisfaction, quality of transitional care and reduction of inappropriate emergency room visits, there are no definitive interventions that have improved cognitive outcomes.
Psychiatric co-morbidities of anxiety, depression and post-traumatic stress disorder(PTSD) have been shown to be associated with delirium and cognitive impairment after critical illness. Survivor accounts revealed a mixture of delusional and factual memories resulting in the distortion of experiences. Intensive care diaries involve the recording of significant daily events and is an attempt at systematic reconstruction of memories by medical staff, family and friends. This has been shown to reduce the incidence of PTSD after critical illness. It raises the possibility that incidence of cognitive impairment, too, may be reduced with non-pharmacological methods.
An intensive care admission involves the immersion of a patient in a foreign environment that is dominated by machines, the use of esoteric language by medical staff and persistent sleep disruption that combines deprivation of meaningful sensory stimulation with noxious sensory overload of alarms and lights. There is an unmet need for the provision of a calm, familiar environment, and deliberate neurocognitive simulation with the intention of allowing processes of thought, reasoning, memory and imagination to occur as they do in everyday life. Allowing these cognitive processes to occur may reduce the use of sedatives, delirium occurrence, and possibly cognitive impairment. Cognitive impairment after critical illness is known to decrease the rehabilitation potential of survivors, increase caregiver burden and is associated with higher utilisation of long-term healthcare resources. There is a need for interventional clinical studies that address prolonged cognitive impairment after critical illnesses.
The overall aim of the study is to improve clinical outcomes in critically ill and mechanically ventilated patients.
The primary hypothesis is that the use of an immersive virtual reality headset for early neurocognitive stimulation in critically ill, mechanically ventilated patients is safe and well tolerated (i.e., does not result in significantly increased agitation).
The primary outcome of the study would be the composite endpoint of both safety and tolerability. The immersive VA is considered as safe and tolerable if the patient does not experience any safety or tolerability events. In both arms, subjects who complete of 4 out of 4 to 6 planned sessions would be considered as having met criteria for both safety and tolerability. If 3 or less sessions were initiated, completion of 2 or more sessions would be considered for having met criteria for both safety and tolerability. The IVR intervention would be considered safe and tolerable if the difference in composite endpoint in the intervention arm is not 20% more than the control arm.
Demonstration of safety, defined as the non-occurrence of significant physiological events that require early termination of the IVR session. The use of an iVR is safe and does not cause physiological changes that require the termination of more than 2 out of 6 planned interventions.
Demonstration of tolerability, defined as: the occurrence of the event that the Richmond Agitation-Sedation Score (RASS) greater than or equal to +2 during the use of the immersive virtual reality headset and for the immediate 15 minutes after completion. The RASS score, ranging from -5 to +4, is a validated scoring system used by clinical staff to evaluate the degree of sedation and agitation of mechanically ventilated patients. A score of +2 reflects an agitated state that is characterised by frequent non-purposeful movement or presence of patient-ventilator dys-synchrony. Each subject has 6 planned interventions, completion of 4 out of 6 interventions would be considered demonstration of tolerability.
There are 2 secondary aims in this study to demonstrate early efficacy in terms of neurocognitive stimulation. One would be comparing change in the EEG data after the immersive VR sessions from the baseline, that may indicate visual attention. The hypothesis is that visual attention during the intervention can be demonstrated with EEG waveforms. The other secondary aim will be evaluation of the eye-tracking software as a potential tool for meaningful interaction.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
OTHER
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Virtual Reality and EEG Interventions
In the interventional arm, 20 subjects will receive twice daily sessions of immersive virtual reality for a maximum of 15 minutes, with EEG headband recording starting 5 minutes prior to and 5 minutes after the intervention, for a maximum of 4 consecutive days.
Immersive Virtual Reality
The immersive virtual reality headgear used is the commercially available FOVE VR headset. It incorporates a 2560x1440 pixel display, position tracking-and eye-tracking. The headset weight 520g with adjustable velcro straps. Softwares are run via a computer connected by HDMI or USB cables.
EEG headband
The EEG headband is commercially available MUSE band. It incorporates 4-channel dry electrode EEG system where data can be recorded with bluetooth connection.
EEG Intervention group
In the control arm, 10 subjects would have EEG recorded for 25 mins twice daily, with a minimum of 4 hours intervening, for 3 consecutive days, with the EEG headband. There would be no immersive virtual reality sessions.
EEG headband
The EEG headband is commercially available MUSE band. It incorporates 4-channel dry electrode EEG system where data can be recorded with bluetooth connection.
Healthy Volunteers
At the completion of the above intensive care study recruitment, demographic data of the interventional immersive virtual reality arm would analysed to recuit 10 age-matched healthy volunteers with no known cognitive disorders or visual impairment. This is to compare study data with healthy controls. A 25 minute session consisting of 15 minutes of immersive virtual reality and 5 minutes of EEG recording with the EEG headband before and after the intervention would be performed. Eye-tracking and EEG data from these groups of patients would be compared against subjects in both arms of the study performed in the intensive care unit to investigate for exploratory differences.
Immersive Virtual Reality
The immersive virtual reality headgear used is the commercially available FOVE VR headset. It incorporates a 2560x1440 pixel display, position tracking-and eye-tracking. The headset weight 520g with adjustable velcro straps. Softwares are run via a computer connected by HDMI or USB cables.
EEG headband
The EEG headband is commercially available MUSE band. It incorporates 4-channel dry electrode EEG system where data can be recorded with bluetooth connection.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Immersive Virtual Reality
The immersive virtual reality headgear used is the commercially available FOVE VR headset. It incorporates a 2560x1440 pixel display, position tracking-and eye-tracking. The headset weight 520g with adjustable velcro straps. Softwares are run via a computer connected by HDMI or USB cables.
EEG headband
The EEG headband is commercially available MUSE band. It incorporates 4-channel dry electrode EEG system where data can be recorded with bluetooth connection.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
1. Patients aged 21 to 75
2. Both genders and all races
3. Acute respiratory failure or septic shock as indications for critical care admission
4. Anticipated to require mechanical ventilation for a minimum of 48 hours after enrolment
5. GCS of E3VTM4 or more
Healthy Volunteer Group
1\) Age-matched to the subjects of the interventional arm of the ICU subjects.
Exclusion Criteria
1. Patients who are actively using an interactive device in the intensive care unit prior to enrolment
2. Illnesses with a terminal prognosis within 3 months
3. Prisoners and pregnant patients
4. Blind or deaf patients
5. Premorbid baseline cognitive impairment
6. Neurological diseases affecting cognition as the cause of intensive care admission including but not limited to ischaemic and haemorrhagic strokes, meningitis, encephalitis, traumatic brain injuries and status epilepticus.
7. Severe critical illness with imminent mortality
8. Critical illness requiring the use of paralytic agents
9. Use of vasopressor dose more than an equivalent of Noradrenaline 0.5 mcg/kg/min
10. Use of fractional inspired oxygen on mechanical ventilation of more than 0.8.
11. Presence of external facial, skull vault or cervical injuries, or deformities, precluding the safe application of the VR headset and EEG band.
12. Participation declined by attending intensivist.
Healthy Volunteer Group
1. Known prior neurological or neurocognitive disease.
2. Baseline heart rate more than 100 beats per minute
3. Baseline systolic blood pressure less than 100 mmHg or more than 160 mmHg
4. Respiratory failure requiring supplemental oxygen
21 Years
75 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
BetaSight Technologies Pte Ltd
UNKNOWN
Institute for Infocomm Research
OTHER
Changi General Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Jessica Quah Li Shan
Associate Consultant
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Jessica LS Quah, M.B.B.S.
Role: PRINCIPAL_INVESTIGATOR
Changi General Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Changi General Hospital
Singapore, , Singapore
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
CTRU CGH
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Zimmerman JE, Kramer AA, Knaus WA. Changes in hospital mortality for United States intensive care unit admissions from 1988 to 2012. Crit Care. 2013 Apr 27;17(2):R81. doi: 10.1186/cc12695.
Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014 Apr 2;311(13):1308-16. doi: 10.1001/jama.2014.2637.
Needham DM, Davidson J, Cohen H, Hopkins RO, Weinert C, Wunsch H, Zawistowski C, Bemis-Dougherty A, Berney SC, Bienvenu OJ, Brady SL, Brodsky MB, Denehy L, Elliott D, Flatley C, Harabin AL, Jones C, Louis D, Meltzer W, Muldoon SR, Palmer JB, Perme C, Robinson M, Schmidt DM, Scruth E, Spill GR, Storey CP, Render M, Votto J, Harvey MA. Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders' conference. Crit Care Med. 2012 Feb;40(2):502-9. doi: 10.1097/CCM.0b013e318232da75.
Shao C, Gu L, Mei Y, Li M. [Analysis of the risk factors of cognitive impairment in post-intensive care syndrome patient]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017 Aug;29(8):716-720. doi: 10.3760/cma.j.issn.2095-4352.2017.08.009. Chinese.
Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, Brummel NE, Hughes CG, Vasilevskis EE, Shintani AK, Moons KG, Geevarghese SK, Canonico A, Hopkins RO, Bernard GR, Dittus RS, Ely EW; BRAIN-ICU Study Investigators. Long-term cognitive impairment after critical illness. N Engl J Med. 2013 Oct 3;369(14):1306-16. doi: 10.1056/NEJMoa1301372.
Jackson JC, Ely EW. Cognitive impairment after critical illness: etiologies, risk factors, and future directions. Semin Respir Crit Care Med. 2013 Apr;34(2):216-22. doi: 10.1055/s-0033-1342984. Epub 2013 May 28.
Jackson JC, Hopkins RO, Miller RR, Gordon SM, Wheeler AP, Ely EW. Acute respiratory distress syndrome, sepsis, and cognitive decline: a review and case study. South Med J. 2009 Nov;102(11):1150-7. doi: 10.1097/SMJ.0b013e3181b6a592.
Trogrlic Z, van der Jagt M, Bakker J, Balas MC, Ely EW, van der Voort PH, Ista E. A systematic review of implementation strategies for assessment, prevention, and management of ICU delirium and their effect on clinical outcomes. Crit Care. 2015 Apr 9;19(1):157. doi: 10.1186/s13054-015-0886-9.
Khan BA, Lasiter S, Boustani MA. CE: critical care recovery center: an innovative collaborative care model for ICU survivors. Am J Nurs. 2015 Mar;115(3):24-31; quiz 34, 46. doi: 10.1097/01.NAJ.0000461807.42226.3e.
Kapfhammer HP, Rothenhausler HB, Krauseneck T, Stoll C, Schelling G. Posttraumatic stress disorder and health-related quality of life in long-term survivors of acute respiratory distress syndrome. Am J Psychiatry. 2004 Jan;161(1):45-52. doi: 10.1176/appi.ajp.161.1.45.
Jackson JC, Pandharipande PP, Girard TD, Brummel NE, Thompson JL, Hughes CG, Pun BT, Vasilevskis EE, Morandi A, Shintani AK, Hopkins RO, Bernard GR, Dittus RS, Ely EW; Bringing to light the Risk Factors And Incidence of Neuropsychological dysfunction in ICU survivors (BRAIN-ICU) study investigators. Depression, post-traumatic stress disorder, and functional disability in survivors of critical illness in the BRAIN-ICU study: a longitudinal cohort study. Lancet Respir Med. 2014 May;2(5):369-79. doi: 10.1016/S2213-2600(14)70051-7. Epub 2014 Apr 7.
Roberts BL, Rickard CM, Rajbhandari D, Reynolds P. Factual memories of ICU: recall at two years post-discharge and comparison with delirium status during ICU admission--a multicentre cohort study. J Clin Nurs. 2007 Sep;16(9):1669-77. doi: 10.1111/j.1365-2702.2006.01588.x.
Garrouste-Orgeas M, Coquet I, Perier A, Timsit JF, Pochard F, Lancrin F, Philippart F, Vesin A, Bruel C, Blel Y, Angeli S, Cousin N, Carlet J, Misset B. Impact of an intensive care unit diary on psychological distress in patients and relatives*. Crit Care Med. 2012 Jul;40(7):2033-40. doi: 10.1097/CCM.0b013e31824e1b43.
Kamdar BB, Huang M, Dinglas VD, Colantuoni E, von Wachter TM, Hopkins RO, Needham DM; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Joblessness and Lost Earnings after Acute Respiratory Distress Syndrome in a 1-Year National Multicenter Study. Am J Respir Crit Care Med. 2017 Oct 15;196(8):1012-1020. doi: 10.1164/rccm.201611-2327OC.
O'Connor MF, Nunnally ME. Expect the unexpected: clinical trials are key to understanding post-intensive care syndrome. Crit Care. 2013 Jun 12;17(3):149. doi: 10.1186/cc12725.
Pourmand A, Davis S, Lee D, Barber S, Sikka N. Emerging Utility of Virtual Reality as a Multidisciplinary Tool in Clinical Medicine. Games Health J. 2017 Oct;6(5):263-270. doi: 10.1089/g4h.2017.0046. Epub 2017 Jul 31.
Dascal J, Reid M, IsHak WW, Spiegel B, Recacho J, Rosen B, Danovitch I. Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials. Innov Clin Neurosci. 2017 Feb 1;14(1-2):14-21. eCollection 2017 Jan-Feb.
Larson EB, Ramaiya M, Zollman FS, Pacini S, Hsu N, Patton JL, Dvorkin AY. Tolerance of a virtual reality intervention for attention remediation in persons with severe TBI. Brain Inj. 2011;25(3):274-81. doi: 10.3109/02699052.2010.551648.
Turon M, Fernandez-Gonzalo S, Jodar M, Goma G, Montanya J, Hernando D, Bailon R, de Haro C, Gomez-Simon V, Lopez-Aguilar J, Magrans R, Martinez-Perez M, Oliva JC, Blanch L. Feasibility and safety of virtual-reality-based early neurocognitive stimulation in critically ill patients. Ann Intensive Care. 2017 Dec;7(1):81. doi: 10.1186/s13613-017-0303-4. Epub 2017 Aug 2.
Mosadeghi S, Reid MW, Martinez B, Rosen BT, Spiegel BM. Feasibility of an Immersive Virtual Reality Intervention for Hospitalized Patients: An Observational Cohort Study. JMIR Ment Health. 2016 Jun 27;3(2):e28. doi: 10.2196/mental.5801.
Gerber SM, Jeitziner MM, Wyss P, Chesham A, Urwyler P, Muri RM, Jakob SM, Nef T. Visuo-acoustic stimulation that helps you to relax: A virtual reality setup for patients in the intensive care unit. Sci Rep. 2017 Oct 16;7(1):13228. doi: 10.1038/s41598-017-13153-1.
Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, Gruber WR, Birbaumer N. A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci. 2005 Dec;22(11):2917-26. doi: 10.1111/j.1460-9568.2005.04482.x.
Muller MM, Gruber T, Keil A. Modulation of induced gamma band activity in the human EEG by attention and visual information processing. Int J Psychophysiol. 2000 Dec 1;38(3):283-99. doi: 10.1016/s0167-8760(00)00171-9.
Badcock NA, Mousikou P, Mahajan Y, de Lissa P, Thie J, McArthur G. Validation of the Emotiv EPOC((R)) EEG gaming system for measuring research quality auditory ERPs. PeerJ. 2013 Feb 19;1:e38. doi: 10.7717/peerj.38. Print 2013.
Brummel NE, Jackson JC, Girard TD, Pandharipande PP, Schiro E, Work B, Pun BT, Boehm L, Gill TM, Ely EW. A combined early cognitive and physical rehabilitation program for people who are critically ill: the activity and cognitive therapy in the intensive care unit (ACT-ICU) trial. Phys Ther. 2012 Dec;92(12):1580-92. doi: 10.2522/ptj.20110414. Epub 2012 May 10.
Standen PJ, Threapleton K, Richardson A, Connell L, Brown DJ, Battersby S, Platts F, Burton A. A low cost virtual reality system for home based rehabilitation of the arm following stroke: a randomised controlled feasibility trial. Clin Rehabil. 2017 Mar;31(3):340-350. doi: 10.1177/0269215516640320. Epub 2016 Jul 10.
Saposnik G, Cohen LG, Mamdani M, Pooyania S, Ploughman M, Cheung D, Shaw J, Hall J, Nord P, Dukelow S, Nilanont Y, De Los Rios F, Olmos L, Levin M, Teasell R, Cohen A, Thorpe K, Laupacis A, Bayley M; Stroke Outcomes Research Canada. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016 Sep;15(10):1019-27. doi: 10.1016/S1474-4422(16)30121-1. Epub 2016 Jun 27.
Brown NJ, Rodger S, Ware RS, Kimble RM, Cuttle L. Efficacy of a children's procedural preparation and distraction device on healing in acute burn wound care procedures: study protocol for a randomized controlled trial. Trials. 2012 Dec 12;13:238. doi: 10.1186/1745-6215-13-238.
Salem Y, Elokda A. Use of virtual reality gaming systems for children who are critically ill. J Pediatr Rehabil Med. 2014;7(3):273-6. doi: 10.3233/PRM-140296.
Related Links
Access external resources that provide additional context or updates about the study.
Demonstration of the FOVE immersive virtual reality head-mounted display
Demonstration of the MUSE EEG headband
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
201802-00023
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.