Cognitive-motor Intervention Using Virtual Reality for Middle-aged Individuals at High Dementia Risk
NCT ID: NCT02832921
Last Updated: 2018-01-26
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
200 participants
INTERVENTIONAL
2016-07-31
2019-08-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Computerized Personal Interventions for Alzheimer's Patients
NCT01329484
Co-design and Pilot Study in VR-based Physical Activity and Cognitive Training
NCT06982170
Concurrent Aerobic Exercise and Virtual Reality Cognitive Training
NCT02963415
Usability of Virtual Reality in Subjects With Mild Cognitive Impairment or Alzheimer's Disease
NCT02176629
VR-based Physical Activity and Reminiscence Therapy
NCT06934720
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
VR cognitive tasks + treadmill
This is the primary group of interest, in which the investigators hypothesize the greatest cognitive gains since motor activity will augment cognitive activity.
cognitive training by virtual reality
treadmill
VR cognitive training will be augmented by walking on a treadmill, since it is well established that dual tasking-i.e. performing the VR-based cognitive effort together with a motor task, even as simple as walking on a treadmill-places greater demand on cognitive resources than a "single task".
VR cognitive tasks - treadmill
This group will be an active control, receiving the VR cognitive training without treadmill walking, to examine whether the motor component augments the effect of the VR in the experimental group.
cognitive training by virtual reality
scientific TV documentary + treadmill
This group will watch a scientific TV documentary while walking on the treadmill. This control group will permit examination of whether the VR cognitive training, which requires an especially active cognitive effort while walking on the treadmill, is more advantageous than passively watching a scientific TV documentary while performing the same motor task as the experimental group.
watching a scientific TV documentary
treadmill
VR cognitive training will be augmented by walking on a treadmill, since it is well established that dual tasking-i.e. performing the VR-based cognitive effort together with a motor task, even as simple as walking on a treadmill-places greater demand on cognitive resources than a "single task".
Passive control
This group of participants will not receive any intervention but will be assessed with the same battery of assessments as the other three groups, permitting comparisons of the cognitive and neurobiological outcomes of the intervention groups to that of the natural course of decline/deterioration of these at-risk individuals.
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
cognitive training by virtual reality
watching a scientific TV documentary
treadmill
VR cognitive training will be augmented by walking on a treadmill, since it is well established that dual tasking-i.e. performing the VR-based cognitive effort together with a motor task, even as simple as walking on a treadmill-places greater demand on cognitive resources than a "single task".
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Fluency in Hebrew, in order to understand the instructions of the cognitive tests.
* Availability of an informant for the participant.
Exclusion Criteria
* Substantial orthopedic limitations which prevent the use of treadmill.
* Unstable medical condition such as an active cancer.
* Incapability of adherence to the training program.
* The participant is undergoing a treatment that may interfere with the study program.
40 Years
65 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Sheba Medical Center
OTHER_GOV
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Michal Schnaider Beeri, PhD
Role: PRINCIPAL_INVESTIGATOR
Sheba Medical Center/Icahn School of Medicine at Mount Sinai
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Sheba Medical Center
Ramat Gan, , Israel
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Garthe A, Roeder I, Kempermann G. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis. Hippocampus. 2016 Feb;26(2):261-71. doi: 10.1002/hipo.22520. Epub 2015 Sep 15.
Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell. 2005 Mar 11;120(5):701-13. doi: 10.1016/j.cell.2005.01.015.
Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5263-7. doi: 10.1073/pnas.96.9.5263.
Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science. 1999 Oct 15;286(5439):548-52. doi: 10.1126/science.286.5439.548.
Stern Y. Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurol. 2012 Nov;11(11):1006-12. doi: 10.1016/S1474-4422(12)70191-6.
Esiri MM, Chance SA. Cognitive reserve, cortical plasticity and resistance to Alzheimer's disease. Alzheimers Res Ther. 2012 Mar 1;4(2):7. doi: 10.1186/alzrt105.
Gaitan A, Garolera M, Cerulla N, Chico G, Rodriguez-Querol M, Canela-Soler J. Efficacy of an adjunctive computer-based cognitive training program in amnestic mild cognitive impairment and Alzheimer's disease: a single-blind, randomized clinical trial. Int J Geriatr Psychiatry. 2013 Jan;28(1):91-9. doi: 10.1002/gps.3794. Epub 2012 Apr 3.
Gates NJ, Valenzuela M, Sachdev PS, Singh NA, Baune BT, Brodaty H, Suo C, Jain N, Wilson GC, Wang Y, Baker MK, Williamson D, Foroughi N, Fiatarone Singh MA. Study of Mental Activity and Regular Training (SMART) in at risk individuals: a randomised double blind, sham controlled, longitudinal trial. BMC Geriatr. 2011 Apr 21;11:19. doi: 10.1186/1471-2318-11-19.
Rebok GW, Ball K, Guey LT, Jones RN, Kim HY, King JW, Marsiske M, Morris JN, Tennstedt SL, Unverzagt FW, Willis SL; ACTIVE Study Group. Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc. 2014 Jan;62(1):16-24. doi: 10.1111/jgs.12607. Epub 2014 Jan 13.
Hausdorff JM, Schweiger A, Herman T, Yogev-Seligmann G, Giladi N. Dual-task decrements in gait: contributing factors among healthy older adults. J Gerontol A Biol Sci Med Sci. 2008 Dec;63(12):1335-43. doi: 10.1093/gerona/63.12.1335.
Optale G, Urgesi C, Busato V, Marin S, Piron L, Priftis K, Gamberini L, Capodieci S, Bordin A. Controlling memory impairment in elderly adults using virtual reality memory training: a randomized controlled pilot study. Neurorehabil Neural Repair. 2010 May;24(4):348-57. doi: 10.1177/1545968309353328. Epub 2009 Nov 24.
Man DW, Chung JC, Lee GY. Evaluation of a virtual reality-based memory training programme for Hong Kong Chinese older adults with questionable dementia: a pilot study. Int J Geriatr Psychiatry. 2012 May;27(5):513-20. doi: 10.1002/gps.2746. Epub 2011 Jun 17.
Tarraga L, Boada M, Modinos G, Espinosa A, Diego S, Morera A, Guitart M, Balcells J, Lopez OL, Becker JT. A randomised pilot study to assess the efficacy of an interactive, multimedia tool of cognitive stimulation in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2006 Oct;77(10):1116-21. doi: 10.1136/jnnp.2005.086074. Epub 2006 Jul 4.
Birdsill AC, Carlsson CM, Willette AA, Okonkwo OC, Johnson SC, Xu G, Oh JM, Gallagher CL, Koscik RL, Jonaitis EM, Hermann BP, LaRue A, Rowley HA, Asthana S, Sager MA, Bendlin BB. Low cerebral blood flow is associated with lower memory function in metabolic syndrome. Obesity (Silver Spring). 2013 Jul;21(7):1313-20. doi: 10.1002/oby.20170. Epub 2013 May 19.
Gommer ED, Martens EG, Aalten P, Shijaku E, Verhey FR, Mess WH, Ramakers IH, Reulen JP. Dynamic cerebral autoregulation in subjects with Alzheimer's disease, mild cognitive impairment, and controls: evidence for increased peripheral vascular resistance with possible predictive value. J Alzheimers Dis. 2012;30(4):805-13. doi: 10.3233/JAD-2012-111628.
Beeri MS, Ravona-Springer R, Moshier E, Schmeidler J, Godbold J, Karpati T, Leroith D, Koifman K, Kravitz E, Price R, Hoffman H, Silverman JM, Heymann A. The Israel Diabetes and Cognitive Decline (IDCD) study: Design and baseline characteristics. Alzheimers Dement. 2014 Nov;10(6):769-78. doi: 10.1016/j.jalz.2014.06.002. Epub 2014 Aug 20.
Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, Szoeke C, Macaulay SL, Martins R, Maruff P, Ames D, Rowe CC, Masters CL; Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol. 2013 Apr;12(4):357-67. doi: 10.1016/S1474-4422(13)70044-9. Epub 2013 Mar 8.
Bauckneht M, Picco A, Nobili F, Morbelli S. Amyloid positron emission tomography and cognitive reserve. World J Radiol. 2015 Dec 28;7(12):475-83. doi: 10.4329/wjr.v7.i12.475.
Van der Mussele S, Fransen E, Struyfs H, Luyckx J, Marien P, Saerens J, Somers N, Goeman J, De Deyn PP, Engelborghs S. Depression in mild cognitive impairment is associated with progression to Alzheimer's disease: a longitudinal study. J Alzheimers Dis. 2014;42(4):1239-50. doi: 10.3233/JAD-140405.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
SHEBA-16-2988-MSB-CTIL
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.