Robot-assisted Hand Rehabilitation for Patients With Stroke

NCT ID: NCT03392493

Last Updated: 2018-12-03

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

25 participants

Study Classification

INTERVENTIONAL

Study Start Date

2018-02-01

Study Completion Date

2018-06-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Robotic therapy can deliver larger amounts of upper extremity movement practice for stroke rehabilitation. Although the treatment effects were supported in studies, there are still limitations in clinical intervention. The study will use the robot-assisted hand rehabilitation with a Gloreha device. Thirty patients with moderate motor deficits were recruited and randomized into 2 treatment groups, AB or BA (A = 12 times of robot-assisted hand rehabilitation, B = 12 times of standard therapy) for 12 weeks of treatment (Sixty minutes a time, twice a week), 1 month of break between conditions for washout period. The performance was assessed by a blinded assessor for five times (pre-test1, post-test 1, pre-test2, post-test 2, follow up at three month). The outcome measures Fugl-Meyer Assessment-Upper Limb section(FMA-UE),Box and block test(BBT), Maximal voluntary contraction(MVC) of extensor digitorum communis(EDC), Abductor pollicis brevis(APB), Flexor digitorum(FD), Dynanometer, Semmes-Weinstein hand monofilament (SWM), Revision of the Nottingham Sensory Assessment (EmNSA), Modified Barthel Index. Collected data will be analyzed with ANOVA test by SPSS version 20.0, and alpha level was set at 0.05. The hypothesis are robot-assisted hand rehabilitation with a Gloreha device has positive effects on sensory, motor, hand function, and ADL ability among patients with stroke.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Many stroke survivors suffered problems with the upper extremity, such as paresis, synergy movement, hypertonicity, jag movement, sensory deficit. An inability to use the upper extremity in daily life can lead to loss of independence with ADLs and of important occupations (eg,work, driving). For individuals with more severe paresis, the potential for recovery of upper extremity function is greatly reduced. Robotic therapy can deliver larger amounts of upper extremity movement practice for these individuals. Although the Robotic therapy appears to provide some benefit for upper extremity motor abilities and participation but is of uncertain utility compared with dose-matched conventional upper limb exercise therapies. Objective: To investigate the effects of robot-assisted hand rehabilitation with a Gloreha device on sensory, motor, and ADL ability for patients with stroke.

Materials and Methods: Thirty patients with moderate motor deficits were recruited and randomized into 2 treatment groups, AB or BA (A = 12 times of robot-assisted hand rehabilitation, B = 12 times of standard therapy) for 12 weeks of treatment (Sixty minutes a time, twice a week), 1 month of break between conditions for washout period. The performance was assessed by a blinded assessor for five times (pre-test1, post-test 1, pre-test2, post-test 2, follow up at three month). The outcome measures Fugl-Meyer Assessment-Upper Limb section(FMA-UE),Box and block test(BBT), Maximal voluntary contraction(MVC) of extensor digitorum communis(EDC), Abductor pollicis brevis(APB), Flexor digitorum(FD), Dynanometer, Semmes-Weinstein hand monofilament (SWM), Revision of the Nottingham Sensory Assessment (EmNSA) for hand evaluations, Modified Barthel Index for ADL ability. Collected data will be analyzed with ANOVA test by SPSS version 20.0, and alpha level was set at 0.05. The hypothesis are robot-assisted hand rehabilitation with a Gloreha device has positive effects on sensory, motor, hand function, and ADL ability among patients with stroke.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Stroke

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

CROSSOVER

AB or BA
Primary Study Purpose

TREATMENT

Blinding Strategy

SINGLE

Outcome Assessors
Single Blind (Outcomes Assessor)

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Group A

In the phase 1 :12 training sessions of Robot-assisted hand rehabilitation(60 minutes a time, 2 times a week); In the phase 2 :12 training sessions of Standard treatment only. (60 minutes a time, 2 times a week)

Group Type EXPERIMENTAL

Robot-assisted hand rehabilitation

Intervention Type BEHAVIORAL

Robot-assisted hand rehabilitation: 20 minute of worm-up exercise and 40 minute of robot-assisted hand exercise. Robot-assisted hand exercises include passive range of motion of hand, bilateral hands task and robot-assisted task.

Standard treatment

Intervention Type BEHAVIORAL

Standard treatment only group: 60 min standard treatment. 20 minute of worm-up exercise and 40 minute of traditional occupational therapy. Traditional occupational therapy include spasticity-reducing activity, bilateral hands activity and hand training task.

Group B

In the phase 1 :12 training sessions of Standard treatment only(60 minutes a time, 2 times a week) ; In the phase 2 :12 training sessions of Robot-assisted hand rehabilitation(60 minutes a time, 2 times a week)

Group Type ACTIVE_COMPARATOR

Robot-assisted hand rehabilitation

Intervention Type BEHAVIORAL

Robot-assisted hand rehabilitation: 20 minute of worm-up exercise and 40 minute of robot-assisted hand exercise. Robot-assisted hand exercises include passive range of motion of hand, bilateral hands task and robot-assisted task.

Standard treatment

Intervention Type BEHAVIORAL

Standard treatment only group: 60 min standard treatment. 20 minute of worm-up exercise and 40 minute of traditional occupational therapy. Traditional occupational therapy include spasticity-reducing activity, bilateral hands activity and hand training task.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Robot-assisted hand rehabilitation

Robot-assisted hand rehabilitation: 20 minute of worm-up exercise and 40 minute of robot-assisted hand exercise. Robot-assisted hand exercises include passive range of motion of hand, bilateral hands task and robot-assisted task.

Intervention Type BEHAVIORAL

Standard treatment

Standard treatment only group: 60 min standard treatment. 20 minute of worm-up exercise and 40 minute of traditional occupational therapy. Traditional occupational therapy include spasticity-reducing activity, bilateral hands activity and hand training task.

Intervention Type BEHAVIORAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* First stroke with hemiplegia
* Chronicity \> 3 months
* Could understand the instructions
* Brunnstrom stageⅡ-Ⅴ
* Sensory impairment (Revision of the Nottingham Sensory Assessment-Tatile\< 2; Kinaesthetic \< 3)
* Modified Ashworth Scale \< 3

Exclusion Criteria

* Age younger than 20 and older than75 years
* Individuals with visual or auditory impairment who couldn't see or hear the feedback from the device clearly
* Individuals with other medical symptoms that can affect movement
Minimum Eligible Age

20 Years

Maximum Eligible Age

75 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Taipei Medical University Shuang Ho Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Jui chi Lin, master

Role: STUDY_CHAIR

Taipei Medical University, Taiwan, R.O.C.

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University

Taipei, , Taiwan

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Taiwan

References

Explore related publications, articles, or registry entries linked to this study.

Hatano S. Experience from a multicentre stroke register: a preliminary report. Bull World Health Organ. 1976;54(5):541-53.

Reference Type BACKGROUND
PMID: 1088404 (View on PubMed)

Carod-Artal J, Egido JA, Gonzalez JL, Varela de Seijas E. Quality of life among stroke survivors evaluated 1 year after stroke: experience of a stroke unit. Stroke. 2000 Dec;31(12):2995-3000. doi: 10.1161/01.str.31.12.2995.

Reference Type BACKGROUND
PMID: 11108762 (View on PubMed)

Chiu L, Shyu WC, Liu YH. Comparisons of the cost-effectiveness among hospital chronic care, nursing home placement, home nursing care and family care for severe stroke patients. J Adv Nurs. 2001 Feb;33(3):380-6. doi: 10.1046/j.1365-2648.2001.01703.x.

Reference Type BACKGROUND
PMID: 11251725 (View on PubMed)

Nordin N, Xie SQ, Wunsche B. Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: a review. J Neuroeng Rehabil. 2014 Sep 12;11:137. doi: 10.1186/1743-0003-11-137.

Reference Type BACKGROUND
PMID: 25217124 (View on PubMed)

Jang SH. The recovery of walking in stroke patients: a review. Int J Rehabil Res. 2010 Dec;33(4):285-9. doi: 10.1097/MRR.0b013e32833f0500.

Reference Type BACKGROUND
PMID: 20805757 (View on PubMed)

Kopp B, Kunkel A, Muhlnickel W, Villringer K, Taub E, Flor H. Plasticity in the motor system related to therapy-induced improvement of movement after stroke. Neuroreport. 1999 Mar 17;10(4):807-10. doi: 10.1097/00001756-199903170-00026.

Reference Type BACKGROUND
PMID: 10208552 (View on PubMed)

Basteris A, Nijenhuis SM, Stienen AH, Buurke JH, Prange GB, Amirabdollahian F. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 2014 Jul 10;11:111. doi: 10.1186/1743-0003-11-111.

Reference Type BACKGROUND
PMID: 25012864 (View on PubMed)

Correction to: Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2017 Feb;48(2):e78. doi: 10.1161/STR.0000000000000120. No abstract available.

Reference Type BACKGROUND
PMID: 28115727 (View on PubMed)

Susanto EA, Tong RK, Ockenfeld C, Ho NS. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial. J Neuroeng Rehabil. 2015 Apr 25;12:42. doi: 10.1186/s12984-015-0033-5.

Reference Type BACKGROUND
PMID: 25906983 (View on PubMed)

Sivan M, O'Connor RJ, Makower S, Levesley M, Bhakta B. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med. 2011 Feb;43(3):181-9. doi: 10.2340/16501977-0674.

Reference Type BACKGROUND
PMID: 21305232 (View on PubMed)

Varalta V, Picelli A, Fonte C, Montemezzi G, La Marchina E, Smania N. Effects of contralesional robot-assisted hand training in patients with unilateral spatial neglect following stroke: a case series study. J Neuroeng Rehabil. 2014 Dec 5;11:160. doi: 10.1186/1743-0003-11-160.

Reference Type BACKGROUND
PMID: 25476507 (View on PubMed)

Sgaggio, E., Joint and functional benefits of a robotic glove for post-stroke patients. publication pending, 2015.

Reference Type BACKGROUND

Pětioký, J. Robot-assisted therapy integrated with virtual reality for rehabilitation of hand function after stroke: a clinical case study. in the 20th ESPRM Congress 2016.

Reference Type BACKGROUND

Vanoglio F, Bernocchi P, Mule C, Garofali F, Mora C, Taveggia G, Scalvini S, Luisa A. Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study. Clin Rehabil. 2017 Mar;31(3):351-360. doi: 10.1177/0269215516642606. Epub 2016 Jul 10.

Reference Type BACKGROUND
PMID: 27056250 (View on PubMed)

Mehrholz J, Hadrich A, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2012 Jun 13;(6):CD006876. doi: 10.1002/14651858.CD006876.pub3.

Reference Type BACKGROUND
PMID: 22696362 (View on PubMed)

Cho KH, Lee KJ, Song CH. Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients. Tohoku J Exp Med. 2012 Sep;228(1):69-74. doi: 10.1620/tjem.228.69.

Reference Type BACKGROUND
PMID: 22976384 (View on PubMed)

Zhang Y, Chapman AM, Plested M, Jackson D, Purroy F. The Incidence, Prevalence, and Mortality of Stroke in France, Germany, Italy, Spain, the UK, and the US: A Literature Review. Stroke Res Treat. 2012;2012:436125. doi: 10.1155/2012/436125. Epub 2012 Mar 1.

Reference Type BACKGROUND
PMID: 22550614 (View on PubMed)

Ovbiagele B, Nguyen-Huynh MN. Stroke epidemiology: advancing our understanding of disease mechanism and therapy. Neurotherapeutics. 2011 Jul;8(3):319-29. doi: 10.1007/s13311-011-0053-1.

Reference Type BACKGROUND
PMID: 21691873 (View on PubMed)

民國100年衛生統計系列(一)死因統計及衛生統計系列(四)全民健康保險醫療統計. 2011: 行政院衛生署.

Reference Type BACKGROUND

O'Sullivan, S.B., T.J. Schmitz, and G. Fulk, Physical rehabilitation. 2013: FA Davis.

Reference Type BACKGROUND

Lang CE, Bland MD, Bailey RR, Schaefer SY, Birkenmeier RL. Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making. J Hand Ther. 2013 Apr-Jun;26(2):104-14;quiz 115. doi: 10.1016/j.jht.2012.06.005. Epub 2012 Sep 10.

Reference Type BACKGROUND
PMID: 22975740 (View on PubMed)

黃琬倩, et al., 不同雙側上肢訓練模式對中風復健成效之文獻回顧. 職能治療學會雜誌, 2009. 27(第 2): p. P29-P48.

Reference Type BACKGROUND

Nilsen DM, Gillen G, Gordon AM. Use of mental practice to improve upper-limb recovery after stroke: a systematic review. Am J Occup Ther. 2010 Sep-Oct;64(5):695-708. doi: 10.5014/ajot.2010.09034.

Reference Type BACKGROUND
PMID: 21073100 (View on PubMed)

Malouin F, Jackson PL, Richards CL. Towards the integration of mental practice in rehabilitation programs. A critical review. Front Hum Neurosci. 2013 Sep 19;7:576. doi: 10.3389/fnhum.2013.00576.

Reference Type BACKGROUND
PMID: 24065903 (View on PubMed)

Wu CY, Huang PC, Chen YT, Lin KC, Yang HW. Effects of mirror therapy on motor and sensory recovery in chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2013 Jun;94(6):1023-30. doi: 10.1016/j.apmr.2013.02.007. Epub 2013 Feb 15.

Reference Type BACKGROUND
PMID: 23419791 (View on PubMed)

Lohse KR, Hilderman CG, Cheung KL, Tatla S, Van der Loos HF. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One. 2014 Mar 28;9(3):e93318. doi: 10.1371/journal.pone.0093318. eCollection 2014.

Reference Type BACKGROUND
PMID: 24681826 (View on PubMed)

Lohse K, Shirzad N, Verster A, Hodges N, Van der Loos HF. Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J Neurol Phys Ther. 2013 Dec;37(4):166-75. doi: 10.1097/NPT.0000000000000017.

Reference Type BACKGROUND
PMID: 24232363 (View on PubMed)

You SH, Jang SH, Kim YH, Hallett M, Ahn SH, Kwon YH, Kim JH, Lee MY. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke. 2005 Jun;36(6):1166-71. doi: 10.1161/01.STR.0000162715.43417.91. Epub 2005 May 12.

Reference Type BACKGROUND
PMID: 15890990 (View on PubMed)

Wuest S, van de Langenberg R, de Bruin ED. Design considerations for a theory-driven exergame-based rehabilitation program to improve walking of persons with stroke. Eur Rev Aging Phys Act. 2014;11(2):119-129. doi: 10.1007/s11556-013-0136-6. Epub 2013 Dec 7.

Reference Type BACKGROUND
PMID: 25309631 (View on PubMed)

Vernadakis N, Derri V, Tsitskari E, Antoniou P. The effect of Xbox Kinect intervention on balance ability for previously injured young competitive male athletes: a preliminary study. Phys Ther Sport. 2014 Aug;15(3):148-55. doi: 10.1016/j.ptsp.2013.08.004. Epub 2013 Sep 4.

Reference Type BACKGROUND
PMID: 24239167 (View on PubMed)

Pichierri G, Wolf P, Murer K, de Bruin ED. Cognitive and cognitive-motor interventions affecting physical functioning: a systematic review. BMC Geriatr. 2011 Jun 8;11:29. doi: 10.1186/1471-2318-11-29.

Reference Type BACKGROUND
PMID: 21651800 (View on PubMed)

Peters DM, McPherson AK, Fletcher B, McClenaghan BA, Fritz SL. Counting repetitions: an observational study of video game play in people with chronic poststroke hemiparesis. J Neurol Phys Ther. 2013 Sep;37(3):105-11. doi: 10.1097/NPT.0b013e31829ee9bc.

Reference Type BACKGROUND
PMID: 23872681 (View on PubMed)

Rong W, Tong KY, Hu XL, Ho SK. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Disabil Rehabil Assist Technol. 2015 Mar;10(2):149-59. doi: 10.3109/17483107.2013.873491. Epub 2013 Dec 31.

Reference Type BACKGROUND
PMID: 24377757 (View on PubMed)

Yun GJ, Chun MH, Park JY, Kim BR. The synergic effects of mirror therapy and neuromuscular electrical stimulation for hand function in stroke patients. Ann Rehabil Med. 2011 Jun;35(3):316-21. doi: 10.5535/arm.2011.35.3.316. Epub 2011 Jun 30.

Reference Type BACKGROUND
PMID: 22506139 (View on PubMed)

Sharma, P., J.M. Sutaria, and P. Zambare, Effects of Neuromuscular Electrical Stimulation (NMES) on Hand Function in Stroke Patients. Indian Journal of Physiotherapy and Occupational Therapy-An International Journal, 2015. 9(3): p. 43-48.

Reference Type BACKGROUND

Carey, L.M., Somatosensory loss after stroke. Critical Reviews™ in Physical and Rehabilitation Medicine, 1995. 7(1).

Reference Type BACKGROUND

Pumpa LU, Cahill LS, Carey LM. Somatosensory assessment and treatment after stroke: An evidence-practice gap. Aust Occup Ther J. 2015 Apr;62(2):93-104. doi: 10.1111/1440-1630.12170. Epub 2015 Jan 23.

Reference Type BACKGROUND
PMID: 25615889 (View on PubMed)

Carey LM, Matyas TA, Oke LE. Sensory loss in stroke patients: effective training of tactile and proprioceptive discrimination. Arch Phys Med Rehabil. 1993 Jun;74(6):602-11. doi: 10.1016/0003-9993(93)90158-7.

Reference Type BACKGROUND
PMID: 8503750 (View on PubMed)

Smania N, Montagnana B, Faccioli S, Fiaschi A, Aglioti SM. Rehabilitation of somatic sensation and related deficit of motor control in patients with pure sensory stroke. Arch Phys Med Rehabil. 2003 Nov;84(11):1692-702. doi: 10.1053/s0003-9993(03)00277-6.

Reference Type BACKGROUND
PMID: 14639572 (View on PubMed)

Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004 Sep;3(9):528-36. doi: 10.1016/S1474-4422(04)00851-8.

Reference Type BACKGROUND
PMID: 15324721 (View on PubMed)

Buerger, S.P. and N. Hogan. Relaxing passivity for human-robot interaction. in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2006. IEEE.

Reference Type BACKGROUND

Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, Krebs HI. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair. 2008 May-Jun;22(3):305-10. doi: 10.1177/1545968307311102. Epub 2008 Jan 9.

Reference Type BACKGROUND
PMID: 18184932 (View on PubMed)

Hasegawa Y, M.Y., Watanabe K, Sankai Y, Five-fingered assistive hand with mechanical compliance of human finger. In IEEE Int. Conf.Robotics and Automation (ICRA). Pasadena, CA, 2008: p. 718-724.

Reference Type BACKGROUND

Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):367-78. doi: 10.1109/TNSRE.2007.903917.

Reference Type BACKGROUND
PMID: 17894269 (View on PubMed)

Loureiro RCV, B.-L.J., Lima ER, Pons JL, Sanchez-Lacuesta JJ,Harwin WS, Upper limb tremor suppression in ADL via an orthosis incorporating a controllable double viscous beam actuator. In Proc. 9th Int. Conf. on Rehabilitation Robotics ICORR. Chicago, IL, 2005: p. 119-122.

Reference Type BACKGROUND

Pedrocchi A, Ferrante S, Ambrosini E, Gandolla M, Casellato C, Schauer T, Klauer C, Pascual J, Vidaurre C, Gfohler M, Reichenfelser W, Karner J, Micera S, Crema A, Molteni F, Rossini M, Palumbo G, Guanziroli E, Jedlitschka A, Hack M, Bulgheroni M, d'Amico E, Schenk P, Zwicker S, Duschau-Wicke A, Miseikis J, Graber L, Ferrigno G. MUNDUS project: MUltimodal neuroprosthesis for daily upper limb support. J Neuroeng Rehabil. 2013 Jul 3;10:66. doi: 10.1186/1743-0003-10-66.

Reference Type BACKGROUND
PMID: 23822118 (View on PubMed)

Chang WH, Kim YH. Robot-assisted Therapy in Stroke Rehabilitation. J Stroke. 2013 Sep;15(3):174-81. doi: 10.5853/jos.2013.15.3.174. Epub 2013 Sep 27.

Reference Type BACKGROUND
PMID: 24396811 (View on PubMed)

Dijkers MP, deBear PC, Erlandson RF, Kristy K, Geer DM, Nichols A. Patient and staff acceptance of robotic technology in occupational therapy: a pilot study. J Rehabil Res Dev. 1991 Spring;28(2):33-44. doi: 10.1682/jrrd.1991.04.0033.

Reference Type BACKGROUND
PMID: 2066869 (View on PubMed)

Fasoli SE, Krebs HI, Ferraro M, Hogan N, Volpe BT. Does shorter rehabilitation limit potential recovery poststroke? Neurorehabil Neural Repair. 2004 Jun;18(2):88-94. doi: 10.1177/0888439004267434.

Reference Type BACKGROUND
PMID: 15228804 (View on PubMed)

Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT Jr, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD, Peduzzi P. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010 May 13;362(19):1772-83. doi: 10.1056/NEJMoa0911341. Epub 2010 Apr 16.

Reference Type BACKGROUND
PMID: 20400552 (View on PubMed)

Hsieh YW, Wu CY, Lin KC, Yao G, Wu KY, Chang YJ. Dose-response relationship of robot-assisted stroke motor rehabilitation: the impact of initial motor status. Stroke. 2012 Oct;43(10):2729-34. doi: 10.1161/STROKEAHA.112.658807. Epub 2012 Aug 14.

Reference Type BACKGROUND
PMID: 22895994 (View on PubMed)

Lincoln, N., J. Jackson, and S. Adams, Reliability and revision of the Nottingham Sensory Assessment for stroke patients. Physiotherapy, 1998. 84(8): p. 358-365.

Reference Type BACKGROUND

Chen HM, Chen CC, Hsueh IP, Huang SL, Hsieh CL. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair. 2009 Jun;23(5):435-40. doi: 10.1177/1545968308331146. Epub 2009 Mar 4.

Reference Type BACKGROUND
PMID: 19261767 (View on PubMed)

Bell-Krotoski J, Tomancik E. The repeatability of testing with Semmes-Weinstein monofilaments. J Hand Surg Am. 1987 Jan;12(1):155-61. doi: 10.1016/s0363-5023(87)80189-2.

Reference Type BACKGROUND
PMID: 3805636 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

TMU-JIRB N201704068

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.