Effects of Interval Physical Training on Expiratory Flow Limitation in Recent Myocardial Infarction
NCT ID: NCT03121911
Last Updated: 2020-05-05
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
WITHDRAWN
NA
INTERVENTIONAL
2019-07-04
2022-10-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Objectives: To evaluate the prevalence of EFL and ventilatory inefficiency during dynamic exercise in individuals with uncomplicated RMI, and to evaluate the effects of interval physical training (IT) in addition to inspiratory muscle training (IMT), exclusive IT and absence of cardiopulmonary rehabilitation (CR) on EFL and ventilatory efficiency.
Methods: 54 patients will be included, divided into three groups with 18 participants each. All will be submitted to evaluations of heart rate variability, hematological and biochemical profile, erythrocytes membrane deformability and stability, inflammatory markers, respiratory pressures, plethysmography, spirometry, carbon monoxide diffusion capacity, ankle brachial index, electrical bioimpedance, echocardiogram, quality of life questionnaires, cardiopulmonary exercise testing and constant load tests. Then, groups 1 (IT) and group 2 (IT + IMT) will participate in a physical training program for 12 weeks and will be re-evaluated after this period. In addition, they will be monitored for a 6 month period after discharge, with returns every two months to measure the energy expenditure through an accelerometer, and at the end of this period they will repeat all the tests again. Group 3 (absence of CR), will consist of patients who do not live in the city or those who can not participate in the CR program for any other reason, and will only participate in the evaluations.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Optimization of Interval Exercise Based-intensity on Ventilatory Anaerobic Threshold in Coronary Artery Disease
NCT02313831
Implementation of New Exercise Protocols in Cardiac Rehabilitation.
NCT07161219
Comparison of Two Exercise Training Modes on Left Myocardial Regional Function After Myocardial Infarction Evaluated by 2D Strain Ultrasound
NCT04190394
Interval Versus Continuous Training in Heart Failure
NCT02448147
Effects of Intermittent Exercise Training Programs in Patients With Myocardial Infarction
NCT04407624
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
These patients are contacted by telephone by the team of the rehabilitation sector, and invited to attend for a pre-entry evaluation for inclusion in treatment. In this telephone contact the secretary of the sector clarifies that the hospital does not have transportation services for the patients who accept to be part of the program, and afterwards the evaluation is scheduled. The initial anamnesis will be performed by a multidisciplinary team. In this screening are collected complaints, past and current history of possible diseases, personal and family history, life habits, medications in use, exams performed pre-hospital discharge and physical examination, collected from an individual anamnesis form. At the end of the evaluation the patient receives a card with the scheduling of training days that occur three times a week and dressing and feeding instructions prior to training.
All volunteers who fit the study criteria will be invited to participate in the study, being informed about the experimental procedures to which they would be submitted. They will also be clarified that all the information collected during the accomplishment of the work will be kept confidential, protecting their identities. Individuals who agree to participate in the study will sign an informed consent according to National Health Council (466/12) guidelines, and a next return will be scheduled to begin physical testing and blood collection. At that moment, the Research Participant Identification Card will be filled in, which will be kept in a confidential place separated from the other evaluations, with restricted access to the researcher, and a code will be given to the participant. In case of refusal to participate in the study, the participant will receive the same care offered to other patients routinely referred to the rehabilitation sector, being included into the conventional rehabilitation program that also lasts for 12 weeks.
Considering that the patients enrolled in the research will have to attend for evaluation and monitoring related to the study, all the displacements related to these additional activities will be refunded to the participants during the entire period of the study.
The evaluation procedures that will be performed in 2 days will consist of: Step 1 - ankle brachial index, heart rate variability at rest, respiratory pressures (maximal inspiratory and expiratory pressures), cardiopulmonary exercise test (incremental and constant load tests), spirometry and quality of life questionnaires (SF-36 and MacNew QLMI); Step 2 - blood collection (hematological and biochemical profile, erythrocytes membrane deformability and stability, inflammatory markers), plethysmography, carbon monoxide diffusion capacity and echocardiography.
After these exams the participant will be randomized to a training group: Group 1 - interval training (IT) or group 2 - IT + inspiratory muscle training (IMT), and will participate in the cardiorespiratory rehabilitation program for a period of 12 weeks, three times a week. Group 3 will consist of those participants who for any reason do not agree to participate in the rehabilitation program, such as those who do not live in the city, and will remain without intervention.
During the 6 months of discharge, participants will be monitored monthly, by telephone contact to verify possible changes in medications in use and general health status.
At the end of the 2nd, 4th and 6th month of discharge, in the last week of each period, the patient will be invited to return to the rehabilitation sector for placement of an accelerometer, a monitor that quantifies free activities and sedentary lifestyle. The selected equipment (activPAL3 ™ micro, PAL Technologies Ltd, Scotland, UK) makes use of algorithms properties to quantify periods of sitting, orthostatism and walking. This information will be used to estimate the daily energy expenditure in the period and will store information of seven consecutive days during the selected weeks.
The re-evaluations will consist of all the exams mentioned above (steps 1 and 2), and will be performed at the beginning and at the end of the training period and after 6 months of the program's discharge.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Group 1 - Interval Training (IT)
All participants will be submitted to several exams of cardiac and pulmonary functions. Then, group 1 (IT) will participate in a physical training program for 12 weeks and will be re-evaluated after this period. After discharge, they will be monitored for an aditional period of 6 months, with returns every two months to measure the energy expenditure (accelerometer). At the end of this period all the tests will be repeated.
Each exercise session will last for 60 minutes and will be divided into three parts as follows: warm up (10 minutes); interval training (IT) - 30 minutes of IT performed in a cycle ergometer, divided into 6 levels of intensity based on the ventilatory anaerobic threshold found in CPET (70%, 80%, 100% and 110%); cooling down (10 minutes).
Interval Training (IT)
Each exercise session will consist of:
1. warm up (10 minutes)- stretches and calisthenics exercises of low to moderate intensity;
2. interval training (IT) - 30 minutes of IT performed in a cycle ergometer, divided into 6 levels of intensity based on the ventilatory anaerobic threshold (VAT) found in CPET: Level 1 - 5 minutes in moderate intensity, at 80% of power reached in VAT; Levels 2 and 4 - 5 minutes of moderate to high intensity, at 100% of VAT; Levels 3 and 5 - 5 minutes of moderate to high intensity, 110% of VAT; Level 6 - 5 minutes in moderate intensity, at 70% of VAT.
3. cooling down (10 minutes) - stretching, and breathing exercises. An CPET will be performed every four weeks to adjust the intensity of training.
Group 2 - IT + IMT
All participants will be submitted to the same evaluations before and after training, and 6 months after discharge. Group 2 (IT + inspiratory muscle training (IMT)) will participate in a 12 week physical training program. After discharge, they will be monitored for an aditional period of 6 months, with returns every two months to measure the energy expenditure.
The group 2 will perform the IMT session at the end of the warm-up exercises, prior to the beginning of the IT on a cycloergometer. IMT session consists of 2 series of 12 inspirations with a 60% of MIP. Participant will be asked to inhale quickly and deeply, as quickly as possible, with a 2 minutes interval between series. All the others exercises will be identical between group 1 and 2.
Interval Training (IT)
Each exercise session will consist of:
1. warm up (10 minutes)- stretches and calisthenics exercises of low to moderate intensity;
2. interval training (IT) - 30 minutes of IT performed in a cycle ergometer, divided into 6 levels of intensity based on the ventilatory anaerobic threshold (VAT) found in CPET: Level 1 - 5 minutes in moderate intensity, at 80% of power reached in VAT; Levels 2 and 4 - 5 minutes of moderate to high intensity, at 100% of VAT; Levels 3 and 5 - 5 minutes of moderate to high intensity, 110% of VAT; Level 6 - 5 minutes in moderate intensity, at 70% of VAT.
3. cooling down (10 minutes) - stretching, and breathing exercises. An CPET will be performed every four weeks to adjust the intensity of training.
Inspiratory Muscle Training (IMT)
The IMT session will take place just after the warm-up exercises and consist of 2 series of 12 inspirations with a 60% of Maximal Inspiratory Pressure (MIP) with the equipment POWERbreathe Plus Medic® (POWERbreathe International Ltd, Warwickshire, UK). The patient will be instructed to remain seated with a nasal clip during the IMT series to avoid nasal air leakage and will be asked to inhale quickly and deeply, as quickly as possible, with a 2 minute interval between series. The training load will be adjusted weekly by a new evaluation of MIP to maintain the intensity of the exercise within the proposed value.
All the others exercises will be identical between group 1 and 2.
Group 3 - Absence of rehabilitation
Group 3 (absence of rehabilitation) will be made up of those patients who for any reason do not agree to participate in the rehabilitation program, such as those who do not live in the city, and will remain without intervention. All participants in this group will perform all the evaluations procedures, comprised of: heart rate variability, hematological and biochemical profile, erythrocytes membrane deformability and stability, inflammatory markers, respiratory pressures, plethysmography, spirometry, carbon monoxide diffusion capacity, ankle brachial index, electrical bioimpedance, echocardiogram, quality of life questionnaires (SF-36 and MacNew QLMI), cardiopulmonary exercise testing and constant load tests.
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Interval Training (IT)
Each exercise session will consist of:
1. warm up (10 minutes)- stretches and calisthenics exercises of low to moderate intensity;
2. interval training (IT) - 30 minutes of IT performed in a cycle ergometer, divided into 6 levels of intensity based on the ventilatory anaerobic threshold (VAT) found in CPET: Level 1 - 5 minutes in moderate intensity, at 80% of power reached in VAT; Levels 2 and 4 - 5 minutes of moderate to high intensity, at 100% of VAT; Levels 3 and 5 - 5 minutes of moderate to high intensity, 110% of VAT; Level 6 - 5 minutes in moderate intensity, at 70% of VAT.
3. cooling down (10 minutes) - stretching, and breathing exercises. An CPET will be performed every four weeks to adjust the intensity of training.
Inspiratory Muscle Training (IMT)
The IMT session will take place just after the warm-up exercises and consist of 2 series of 12 inspirations with a 60% of Maximal Inspiratory Pressure (MIP) with the equipment POWERbreathe Plus Medic® (POWERbreathe International Ltd, Warwickshire, UK). The patient will be instructed to remain seated with a nasal clip during the IMT series to avoid nasal air leakage and will be asked to inhale quickly and deeply, as quickly as possible, with a 2 minute interval between series. The training load will be adjusted weekly by a new evaluation of MIP to maintain the intensity of the exercise within the proposed value.
All the others exercises will be identical between group 1 and 2.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Aged 35 to 80 years
* Recent myocardial infarction (RMI), between 15 and 45 days post-event, being the 1st MI event
* Left ventricular ejection fraction (LVEF) ≥ 50%
* Preserved respiratory muscle strength (Maximal Inspiratory Pressure \> 60% predicted)
* Whether or not submitted to Percutaneous Transluminal Coronary Angioplasty (PTCA)
* Presence of expiratory flow limitation by incremental cardiopulmonary test
* Agreement to participate in the study after reading and signing the informed consent
* Body Mass Index (BMI) ≥ 35 kg / m2
* Previous diagnosis of any musculoskeletal, neurological, respiratory or vascular diseases
* Ankle Brachial Index (ABI) \< 0.90 and \> 1.4
* Diabetes mellitus
* Active or smoking cessation for less than six months
* Chronic organic dysfunction such as renal or hepatic impairment
* Patients submitted to Coronary Artery Bypass Graft Surgery (CABG)
* Inadequate response of systemic or electrocardiographic blood pressure during the cardiopulmonary exercise test (CPET)
* Presence of Chronic Obstructive Pulmonary Disease (COPD) or Interstitial Lung Diseases
* Presence of valvulopathies or Chagas disease
* Participants with pacemaker (PM) or implantable cardioverter defibrillator (ICD)
Exclusion Criteria
* Participants who do not complete all the steps proposed in the research
* Participants who request their exclusion at any time during the study, will be excluded
35 Years
80 Years
MALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Universidade Federal de Sao Carlos
OTHER
Federal University of Uberlandia
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Débora Lara Zuza Scheucher
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Debora LZ Scheucher, M.S.
Role: PRINCIPAL_INVESTIGATOR
Federal University of Uberlandia
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Universidade Federal de Uberlândia
Uberlândia, Minas Gerais, Brazil
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Oldridge N. Exercise-based cardiac rehabilitation in patients with coronary heart disease: meta-analysis outcomes revisited. Future Cardiol. 2012 Sep;8(5):729-51. doi: 10.2217/fca.12.34.
Palmefors H, DuttaRoy S, Rundqvist B, Borjesson M. The effect of physical activity or exercise on key biomarkers in atherosclerosis--a systematic review. Atherosclerosis. 2014 Jul;235(1):150-61. doi: 10.1016/j.atherosclerosis.2014.04.026. Epub 2014 May 1.
von Kanel R, Carney RM, Zhao S, Whooley MA. Heart rate variability and biomarkers of systemic inflammation in patients with stable coronary heart disease: findings from the Heart and Soul Study. Clin Res Cardiol. 2011 Mar;100(3):241-7. doi: 10.1007/s00392-010-0236-5. Epub 2010 Sep 21.
Pinkstaff S, Peberdy MA, Kontos MC, Fabiato A, Finucane S, Arena R. Usefulness of decrease in oxygen uptake efficiency slope to identify myocardial perfusion defects in men undergoing myocardial ischemic evaluation. Am J Cardiol. 2010 Dec 1;106(11):1534-9. doi: 10.1016/j.amjcard.2010.07.034. Epub 2010 Oct 14.
Porta A, Guzzetti S, Montano N, Furlan R, Pagani M, Malliani A, Cerutti S. Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans Biomed Eng. 2001 Nov;48(11):1282-91. doi: 10.1109/10.959324.
Porta A, Tobaldini E, Guzzetti S, Furlan R, Montano N, Gnecchi-Ruscone T. Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H702-8. doi: 10.1152/ajpheart.00006.2007. Epub 2007 Feb 16.
Prado DM, Rocco EA, Silva AG, Silva PF, Lazzari JM, Assumpcao GL, Thies SB, Suzaki CY, Puig RS, Furlan V. The influence of aerobic fitness status on ventilatory efficiency in patients with coronary artery disease. Clinics (Sao Paulo). 2015 Jan;70(1):46-51. doi: 10.6061/clinics/2015(01)09.
Prado DM, Rocco EA, Silva AG, Rocco DF, Pacheco MT, Furlan V. Effect of exercise training on ventilatory efficiency in patients with heart disease: a review. Braz J Med Biol Res. 2016 Jun 20;49(7):e5180. doi: 10.1590/1414-431X20165180.
2011 WRITING GROUP MEMBERS; 2005 WRITING COMMITTEE MEMBERS; ACCF/AHA TASK FORCE MEMBERS. 2011 ACCF/AHA Focused Update of the Guideline for the Management of patients with peripheral artery disease (Updating the 2005 Guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2011 Nov 1;124(18):2020-45. doi: 10.1161/CIR.0b013e31822e80c3. Epub 2011 Sep 29. No abstract available.
Shepherd CW, While AE. Cardiac rehabilitation and quality of life: a systematic review. Int J Nurs Stud. 2012 Jun;49(6):755-71. doi: 10.1016/j.ijnurstu.2011.11.019. Epub 2011 Dec 23.
Takahashi AC, Porta A, Melo RC, Quiterio RJ, da Silva E, Borghi-Silva A, Tobaldini E, Montano N, Catai AM. Aging reduces complexity of heart rate variability assessed by conditional entropy and symbolic analysis. Intern Emerg Med. 2012 Jun;7(3):229-35. doi: 10.1007/s11739-011-0512-z. Epub 2011 Jan 21.
Tamburus NY, Paula RF, Kunz VC, Cesar MC, Moreno MA, da Silva E. Interval training based on ventilatory anaerobic threshold increases cardiac vagal modulation and decreases high-sensitivity c-reative protein: randomized clinical trial in coronary artery disease. Braz J Phys Ther. 2015 Nov-Dec;19(6):441-50. doi: 10.1590/bjpt-rbf.2014.0124. Epub 2015 Oct 9.
Anderson L, Oldridge N, Thompson DR, Zwisler AD, Rees K, Martin N, Taylor RS. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: Cochrane Systematic Review and Meta-Analysis. J Am Coll Cardiol. 2016 Jan 5;67(1):1-12. doi: 10.1016/j.jacc.2015.10.044.
Van de Veire NR, Van Laethem C, Philippe J, De Winter O, De Backer G, Vanderheyden M, De Sutter J. VE/VCO2 slope and oxygen uptake efficiency slope in patients with coronary artery disease and intermediate peakVO2. Eur J Cardiovasc Prev Rehabil. 2006 Dec;13(6):916-23. doi: 10.1097/01.hjr.0000238400.35094.72.
American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002 Aug 15;166(4):518-624. doi: 10.1164/rccm.166.4.518. No abstract available.
Angadi SS, Mookadam F, Lee CD, Tucker WJ, Haykowsky MJ, Gaesser GA. High-intensity interval training vs. moderate-intensity continuous exercise training in heart failure with preserved ejection fraction: a pilot study. J Appl Physiol (1985). 2015 Sep 15;119(6):753-8. doi: 10.1152/japplphysiol.00518.2014. Epub 2014 Sep 4.
Antila K. Quantitative characterization of heart rate during exercise. Scand J Clin Lab Invest Suppl. 1979;(153):3-68. No abstract available.
Arend M, Kivastik J, Maestu J. Maximal inspiratory pressure is influenced by intensity of the warm-up protocol. Respir Physiol Neurobiol. 2016 Aug;230:11-5. doi: 10.1016/j.resp.2016.05.002. Epub 2016 May 12.
Arnold SV, Spertus JA, Jones PG, Xiao L, Cohen DJ. The impact of dyspnea on health-related quality of life in patients with coronary artery disease: results from the PREMIER registry. Am Heart J. 2009 Jun;157(6):1042-9.e1. doi: 10.1016/j.ahj.2009.03.021.
Aulin J, Siegbahn A, Hijazi Z, Ezekowitz MD, Andersson U, Connolly SJ, Huber K, Reilly PA, Wallentin L, Oldgren J. Interleukin-6 and C-reactive protein and risk for death and cardiovascular events in patients with atrial fibrillation. Am Heart J. 2015 Dec;170(6):1151-60. doi: 10.1016/j.ahj.2015.09.018. Epub 2015 Oct 3.
Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 2001;31(1):13-31. doi: 10.2165/00007256-200131010-00002.
Baba R, Nagashima M, Goto M, Nagano Y, Yokota M, Tauchi N, Nishibata K. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J Am Coll Cardiol. 1996 Nov 15;28(6):1567-72. doi: 10.1016/s0735-1097(96)00412-3.
Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi M, Gulati M, Keteyian SJ, Lavie CJ, Macko R, Mancini D, Milani RV; American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Peripheral Vascular Disease; Interdisciplinary Council on Quality of Care and Outcomes Research. Clinician's Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010 Jul 13;122(2):191-225. doi: 10.1161/CIR.0b013e3181e52e69. Epub 2010 Jun 28. No abstract available.
Barbosa-Silva MC, Barros AJ, Wang J, Heymsfield SB, Pierson RN Jr. Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr. 2005 Jul;82(1):49-52. doi: 10.1093/ajcn.82.1.49.
Black LF, Hyatt RE. Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Respir Dis. 1969 May;99(5):696-702. doi: 10.1164/arrd.1969.99.5.696. No abstract available.
Caruso P, Albuquerque AL, Santana PV, Cardenas LZ, Ferreira JG, Prina E, Trevizan PF, Pereira MC, Iamonti V, Pletsch R, Macchione MC, Carvalho CR. Diagnostic methods to assess inspiratory and expiratory muscle strength. J Bras Pneumol. 2015 Mar-Apr;41(2):110-23. doi: 10.1590/S1806-37132015000004474.
Conraads VM, Pattyn N, De Maeyer C, Beckers PJ, Coeckelberghs E, Cornelissen VA, Denollet J, Frederix G, Goetschalckx K, Hoymans VY, Possemiers N, Schepers D, Shivalkar B, Voigt JU, Van Craenenbroeck EM, Vanhees L. Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: the SAINTEX-CAD study. Int J Cardiol. 2015 Jan 20;179:203-10. doi: 10.1016/j.ijcard.2014.10.155. Epub 2014 Oct 25.
Cornish AK, Broadbent S, Cheema BS. Interval training for patients with coronary artery disease: a systematic review. Eur J Appl Physiol. 2011 Apr;111(4):579-89. doi: 10.1007/s00421-010-1682-5. Epub 2010 Oct 23.
Masterson Creber RM, Lee CS, Margulies K, Riegel B. Identifying biomarker patterns and predictors of inflammation and myocardial stress. J Card Fail. 2015 Jun;21(6):439-45. doi: 10.1016/j.cardfail.2015.02.006. Epub 2015 Feb 26.
Fang L, Moore XL, Dart AM, Wang LM. Systemic inflammatory response following acute myocardial infarction. J Geriatr Cardiol. 2015 May;12(3):305-12. doi: 10.11909/j.issn.1671-5411.2015.03.020.
Ankle Brachial Index Collaboration; Fowkes FG, Murray GD, Butcher I, Heald CL, Lee RJ, Chambless LE, Folsom AR, Hirsch AT, Dramaix M, deBacker G, Wautrecht JC, Kornitzer M, Newman AB, Cushman M, Sutton-Tyrrell K, Fowkes FG, Lee AJ, Price JF, d'Agostino RB, Murabito JM, Norman PE, Jamrozik K, Curb JD, Masaki KH, Rodriguez BL, Dekker JM, Bouter LM, Heine RJ, Nijpels G, Stehouwer CD, Ferrucci L, McDermott MM, Stoffers HE, Hooi JD, Knottnerus JA, Ogren M, Hedblad B, Witteman JC, Breteler MM, Hunink MG, Hofman A, Criqui MH, Langer RD, Fronek A, Hiatt WR, Hamman R, Resnick HE, Guralnik J, McDermott MM. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008 Jul 9;300(2):197-208. doi: 10.1001/jama.300.2.197.
Guazzi M, Arena R, Guazzi MD. Evolving changes in lung interstitial fluid content after acute myocardial infarction: mechanisms and pathophysiological correlates. Am J Physiol Heart Circ Physiol. 2008 Mar;294(3):H1357-64. doi: 10.1152/ajpheart.00866.2007. Epub 2008 Jan 11.
Guzzetti S, Borroni E, Garbelli PE, Ceriani E, Della Bella P, Montano N, Cogliati C, Somers VK, Malliani A, Porta A. Symbolic dynamics of heart rate variability: a probe to investigate cardiac autonomic modulation. Circulation. 2005 Jul 26;112(4):465-70. doi: 10.1161/CIRCULATIONAHA.104.518449. Epub 2005 Jul 18.
Haensel A, Mills PJ, Nelesen RA, Ziegler MG, Dimsdale JE. The relationship between heart rate variability and inflammatory markers in cardiovascular diseases. Psychoneuroendocrinology. 2008 Nov;33(10):1305-12. doi: 10.1016/j.psyneuen.2008.08.007. Epub 2008 Sep 25.
Ho KK, Moody GB, Peng CK, Mietus JE, Larson MG, Levy D, Goldberger AL. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation. 1997 Aug 5;96(3):842-8. doi: 10.1161/01.cir.96.3.842.
Huikuri HV, Makikallio TH, Perkiomaki J. Measurement of heart rate variability by methods based on nonlinear dynamics. J Electrocardiol. 2003;36 Suppl:95-9. doi: 10.1016/j.jelectrocard.2003.09.021.
Karsten M, Neves LM, Neves VR, Beltrame T, Borghi-Silva A, Arena R, Agostoni P, Catai AM. Recent myocardial infarction patients present ventilatory limitation during aerobic exercise. Int J Cardiol. 2012 Nov 29;161(3):180-1. doi: 10.1016/j.ijcard.2012.06.026. Epub 2012 Jun 22. No abstract available.
Nakajima KM, Rodrigues RC, Gallani MC, Alexandre NM, Oldridge N. Psychometric properties of MacNew Heart Disease Health-related Quality of Life Questionnaire: Brazilian version. J Adv Nurs. 2009 May;65(5):1084-94. doi: 10.1111/j.1365-2648.2009.04962.x. Epub 2009 Mar 9.
Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests. II. Maximal respiratory pressures and voluntary ventilation. Braz J Med Biol Res. 1999 Jun;32(6):719-27. doi: 10.1590/s0100-879x1999000600007.
Neder JA, Andreoni S, Peres C, Nery LE. Reference values for lung function tests. III. Carbon monoxide diffusing capacity (transfer factor). Braz J Med Biol Res. 1999 Jun;32(6):729-37. doi: 10.1590/s0100-879x1999000600008.
Neves LM, Karsten M, Neves VR, Beltrame T, Borghi-Silva A, Catai AM. Relationship between inspiratory muscle capacity and peak exercise tolerance in patients post-myocardial infarction. Heart Lung. 2012 Mar-Apr;41(2):137-45. doi: 10.1016/j.hrtlng.2011.07.010. Epub 2011 Dec 15.
Neves LM, Karsten M, Neves VR, Beltrame T, Borghi-Silva A, Catai AM. Respiratory muscle endurance is limited by lower ventilatory efficiency in post-myocardial infarction patients. Braz J Phys Ther. 2014 Jan-Feb;18(1):1-8. doi: 10.1590/s1413-35552012005000134. Epub 2014 Feb 1.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
005040/2017
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.