Effect of Controlled Hypotension on Cerebral Oxygen Saturation
NCT ID: NCT02967029
Last Updated: 2021-09-01
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE4
150 participants
INTERVENTIONAL
2016-11-01
2017-08-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The goal of controlled hypotension is to maintain an arterial blood pressure which is sufficiently low to allow a reduction in bleeding with offering a superior intraoperative hemodynamic stability during stressful surgical events to maintain intact cerebral microcirculatory auto-regulation.
Auto-regulation impairment during controlled hypotension might increase oxygen extraction ratio. Thus monitoring the cerebral oxygen saturation (rSO2) to measure cerebral oxygenation becomes essential and it remains a challenge to clinically assess cerebral oxygenation on a routine basis.
Various recent studies reported based on facilitating the induction of controlled hypotension, but the effects of hypotension on cerebral perfusion and oxygenation and its effects on postoperative cognitive function are still poorly characterized. Moreover, the relationship between rSO2 and controlled hypotension has not been established in patients undergoing FESS.
Within the last decade, near infrared spectroscopy (NIRS) INVOS® monitors which is clinically most broadly spread technique, can be used for non-invasive assessment of cerebral perfusion by detecting changes in rSO2 by online monitoring of cerebral oxygenation.
In our clinical routine for achieving a controlled hypotension, esmolol and remifentanyl are the most commonly used hypotensive agents. The aim of this prospective randomized single blind study was to investigate the influence of remifentanyl as a hypotensive agent in comparison to esmolol on rSO2 by using NIRS and postoperative cognitive function in patients undergoing FESS.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Effects of Nicardipine and Esmolol Applied for Controlled Hypotension
NCT05430724
Avoiding Postinduction Hypotension: the Clinical ZERO-HYPOTENSION Proof-of-concept Study
NCT05842759
Is Regional Oxygen Saturation Effective in Predicting Perfusion Parameters and Patient Outcomes in Liver Resection
NCT05077397
PPI Guided Strategies for Prevention and Treatment of Intraoperative Hypotension
NCT05792696
Use of Perfusion Index Change as a Predictor of Hypotension During Propofol Sedation in Adult Patients Undergoing Hip Surgery Under Spinal Anesthesia: A Prospective Observational Study
NCT03556969
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The goal of controlled hypotension is to maintain an arterial blood pressure which is sufficiently low to allow a reduction in bleeding with offering a superior intraoperative hemodynamic stability during stressful surgical events to maintain intact cerebral microcirculatory auto-regulation.
Auto-regulation impairment during controlled hypotension might increase oxygen extraction ratio. Thus monitoring the cerebral oxygen saturation (rSO2) to measure cerebral oxygenation becomes essential and it remains a challenge to clinically assess cerebral oxygenation on a routine basis.
Various recent studies reported based on facilitating the induction of controlled hypotension, but the effects of hypotension on cerebral perfusion and oxygenation and its effects on postoperative cognitive function are still poorly characterized. Moreover, the relationship between rSO2 and controlled hypotension has not been established in patients undergoing FESS.
Within the last decade, near infrared spectroscopy (NIRS) monitors which is clinically most broadly spread technique, can be used for non-invasive assessment of cerebral perfusion by detecting changes in rSO2 by online monitoring of cerebral oxygenation.
In our clinical routine for achieving a controlled hypotension, esmolol and remifentanyl are the most commonly used hypotensive agents. The aim of this prospective randomized single blind study was to investigate the influence of remifentanyl as a hypotensive agent in comparison to esmolol on rSO2 by using NIRS and postoperative cognitive function in patients undergoing FESS.
After receiving the local institutional research ethics committee approval and written informed consent from each patient, 140 American Society of Anesthesiology (ASA) I and II patients aging between 18 and 65, undergoing for elective FESS and required controlled hypotension were enrolled in this study. Patients with hypertension, coronary artery diseases and cerebral insufficiency, severe hypovolemia and anemia, body mass index over 30 kg/m2, anticoagulation therapy and previous hypersensitivity to any of the study drugs were excluded from the study.
They were equally randomly assigned to receive either remifentanil or esmolol to maintain mean arterial blood pressure (MAP) between 55-65 mmHg.
After insertion of a peripheral venous cannula upon arrival to the operating room, balanced electrolyte solution at 5 ml/kg/h was initiated. Following the premedication with intravenous midazolam 0.05 miligram/kg IV 15 min prior to the induction of anesthesia, and standard monitoring was applied consisting of electrocardiography (EKG), noninvasive blood pressure, peripheral oxygen saturation (SPO2). Further, cerebral oxygen saturation value (rSO2, using the NIRS with adult probe placed in the median frontal region) was continuously monitored using NIRS before the induction of anesthesia.
After preoxygenation anaesthesia was induced with 2 miligram/kg propofol, 2 μg/kg fentanyl and to facilitate the endotracheal intubation 0.6 miligram/kg rocuronium was administered. Following orotracheal intubation, mechanical ventilation was adjusted to maintain PaCO2 at 35 to 40 mm Hg.
Anaesthesia maintenance was performed using sevoflurane (0.8 to 1 adjusted MAC) in a mixture of O2/Nitrous oxide 50%/50%. Then the treatment protocol consisting of remifentanil and esmolol were delivered in order to induce controlled hypotension that was considered effective when MAP reached the target pressure of 60 mmHg.
Patients in the esmolol group (Group E) received esmolol 0.5 miligram/kg iv at induction followed by a continuous infusion of esmolol 5-15 miligram/kg/min and titrated to the maximum dose 300μg/kg/min to reach target MAP of 50-60 mmHg about a value of 5 mmHg. Patients in the remifentanil group (Group R) received remifentanil 0.5 μg/kg/min at induction followed by an infusion of remifentanil 0.1- 0.5 μg/kg/min and titrated between 0,1- 0,5 μg/kg/min to reach target MAP of 50-60 mmHg about a value of 5 mmHg.
In both groups no surgical stress was applied during 5 min following start of hypotension.
Cerebral desaturation was defined as a reduction of rSO2 to higher than 20 % of baseline for ≥ 15 seconds. When cerebral desaturation occurred, remifentanil and esmolol infusion doses were decreased and MAP was increased with intravascular fluid administration and ephedrine. When hypotension below the target MAP and bradycardia below the heart rate 45 beats/min longer than one minute in duration were occurred, a bolus of ephedrine 10 mg iv and atropine 0.1 miligram/kg iv applied, respectively.
All operations were performed by the same attending surgeon in order to ensure consistency in the estimation of the surgical field who was blinded to the hypotensive agent. When MAP reached the desired range (50-60 mmHg) and was maintained for at least 10 minutes, the quality of the surgical field was defined in terms of blood loss and dryness using a 10 point scale (0= no bleeding, virtually bloodless field; 10= uncontrolled bleeding).
The cognitive function of the patients was assessed using Mini Mental State Examination (MMSE) test. Preoperative MMSE test was done at the premedication room 1 hour before surgery and 120 minutes after the discontinuation of the drugs for each patient. A decrease in the MMSE score ≥ 2 points from baseline was considered as an index of decline in cognitive function.
Hemodynamics (Diastolic blood pressure (DBP), Mean blood pressure (MBP), systolic blood pressure (SBP) and heart rate (HR), SPO2 and rSO2 were recorded preoperatively (baseline), postinduction 5th min (after administration of hypotensive and anesthetic agent), intraoperatively (10, 20, 30, 45, 60, 90 minutes), 5 and 10 minutes after stoppage of hypotensive agents. Additionally, the duration of surgery, duration of anesthesia, the consumption dose of hypotensive agents, desaturated and not desaturated patients among the groups were also recorded.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
SCREENING
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
b group
b group controlled hypotension with esmolol hydrochloride
Esmolol Hydrochloride
the influence of brevibloc as a hypotensive agent on rSO2
r group
r group controlled hypotension with remifentanil hydrochloride
Remifentanil Hydrochloride
the influence of remifentanyl as a hypotensive agent on rSO2
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Esmolol Hydrochloride
the influence of brevibloc as a hypotensive agent on rSO2
Remifentanil Hydrochloride
the influence of remifentanyl as a hypotensive agent on rSO2
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* aging between 18 and 65,
* undergoing for elective FESS
* requiring general anesthesia with endotracheal intubation
Exclusion Criteria
* coronary artery diseases and cerebral insufficiency,
* severe hypovolemia and anemia,
* body mass index over 30 kg/m2,
* anticoagulation therapy
* previous hypersensitivity to any of the study drugs
18 Years
65 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Istanbul University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Demet Altun
attending anesthesiologist
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Demet Altun
Role: PRINCIPAL_INVESTIGATOR
Istanbul University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Istanbul University, Department of Anesthesiology
Istanbul, , Turkey (Türkiye)
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IstanbulUn
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.