Three Dimensional Digital Preoperative Planning for the Osteosynthesis of Distal Radius Fractures
NCT ID: NCT02909647
Last Updated: 2022-04-27
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
100 participants
INTERVENTIONAL
2014-01-31
2025-05-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Methods: Thirty wrists of 30 distal radius fracture patients who underwent osteosynthesis using volar locking plates were evaluated. Fifteen wrists were treated with 3D preoperative planning as the plan group. The other fifteen wrists were treated with conventional preoperative planning as the control group. Volar tilt and radial inclination were measured after operation and compared with the healthy side wrist. In addition, preoperative planning and postoperative reductions were compared by measuring the volar tilt and radial inclination of the 3D images in the plan group. The intra-class correlation coefficient (ICC) values of the radiological parameters between healthy side wrists and injured side wrists, between preoperative planning and postoperative reductions were evaluated. For the accuracy of the implant choices, the ICCs for the screw lengths between the preoperative plan and the actual choices were evaluated in the plan group.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Development of Three Dimensional Preoperative Planning System for the Osteosynthesis of Distal Humerus Fractures
NCT04349319
Image Fusion System for 3D Preoperative Planning in the Osteosynthesis and Osteotomy
NCT03764501
Defining Displacement Thresholds for Surgical Intervention for Distal Radius Fractures - a Delphi Study
NCT03126474
Computer Assisted Planing of Corrective Osteotomy for Distal Radius Malunion
NCT01193010
Effects of Preoperative 3D Printing of Distal Intra-articular Radius Fractures on Quality of Fracture Reduction
NCT05739240
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Preoperative Planning In the plan group, 3D digital preoperative planning and a surgical simulation were performed in order to determine the reduction and the placement of the implants in addition to the plate/screw size prior to surgery. Reduction and placement of the implants were simulated using software newly-developed by the authors (Zed-Trauma, LEXI Co., Ltd. Tokyo, Japan). Planning using this software is based on digital imaging and communications in medicine (DICOM) data from CT scans. All preoperative planning group patients had pre- and post-operative CT scans in order to compare the planned and post-operative reduction shape and placement of the implant. The CT comprised contiguous sections of 1 mm thickness. The software allows the surgeons to 1) visualize the fracture displacement, 2) simulate repositioning of the fragments, 3) place the plate and screws, 4) adjust the sizes of the implants, and 5) check the shape after the reduction and implant placement by measuring anatomical shape (Figure 1 and 2). After importing the DICOM images to the software, a 3D image of the distal radius was made. Each distal radius fracture was segmented according to the main fracture fragments using the cut function. Each fragment was repositioned in accordance with fracture lines. After repositioning the fragments, the bone shape was checked three dimensionally. Reduction of the fragment was performed to regain the volar tilt and the radial inclination, and less than 2mm step-off for the intra-articular displacement referring to the healthy side wrist X ray. Simulation of the implantation of the volar locking plate used 3D templates with variable sizes of plates and screws. The Stellar II locking plate (HOYA Technosurgical, Inc., Tokyo, Japan) was used in this study. This plate system has small, medium, and large sizes for the width, and short and long sizes for the plate length. Screw lengths from 10 to 24 mm for the distal (2.4 mm diameter), and 10 to 20 mm for the proximal (2.6 mm diameter) are available. Computer aided design models of different-sized implants were installed in the software. The plate size was chosen to cover the distal fragment maximally and not exceeded the width of the distal radius. The plans were made by a single hand surgeon. After the planning, osteosynthesis was performed under general anesthesia. During the surgery, the operator performed the reduction and the placement of the plate while comparing images between the preoperative plan and fluoroscopy. The surgeons tried to reproduce the planned position of the implant by checking the distances from the margin of the implant to the margin of the radius under fluoroscopy. The screw sizes were determined by intraoperative measurement in reference to the preoperative plan. For the screw fixation, a guide block was used to insert the distal screws.
In the control group, preoperative planning was performed using conventional posterior-anterior and lateral view radiographs. Based on the X-ray image, the plate size was chosen using the conventional template. After the planning, osteosynthesis was performed under general anesthesia in the same manner as for the plan group. The surgeries were performed by several residents and fellows under supervision of a hand surgeon.
Evaluations The planned sizes of implant were compared with the actual sizes used at operation in the plan group. The screw holes were numbered from 1 to 8 for the distal (there were 7 holes in small and medium plates, and 8 holes in a large plate), and from 1 to 3 for the proximal. The screw lengths actually chosen were recorded according to the screw number.
To evaluate the accuracy of the anatomical reduction, volar tilt and radial inclination of the post-operative wrists X-ray were compared with those of the healthy side wrist in both plan and control groups. The posterior-anterior view was obtained with the elbow flexed at 90°, the ulna perpendicular to the humerus, and the forearm in the pronated position. The lateral view was obtained with the elbow flexed at 90° and adducted against the trunk. The wrists were in a neutral position with no flexion, extension, or deviation in either view. Volar tilt was measured on a lateral view. The angle between a line along the distal radial articular surface and the line perpendicular to the longitudinal axis of the radius at the joint margin was measured as volar tilt. Radial inclination was measured on a posterior-anterior view. The angle between one line connecting the radial styloid tip and the ulnar aspect of the distal radius and a second line perpendicular to the longitudinal axis of the radius was measured as radial inclination. These radiological parameters were measured by a single hand surgeon. In addition, preoperative planning and postoperative reductions were compared by measuring the volar tilt and radial inclination of the 3D images in the plan group (Figure 3). The axis of the radius was adjusted. The angle between a line from the dorsal edge to the volar edge of the radius and the line perpendicular to the longitudinal axis of the radius was measured as 3D volar tilt. The angle between a line from the radial styloid tip to the ulnar aspect of the distal radius and the line perpendicular to the longitudinal axis of the radius was measured as 3D radial inclination.
Statistical Analysis The results are expressed as mean +/- standard deviation. An intra-class correlation coefficient (ICC) was used to evaluate the accuracy of the anatomical reduction. The ICC values of the radiological parameters (volar tilt and radial inclination) between healthy side wrists and injured side wrists after the surgery were evaluated in both the plan and control groups. In addition, the ICCs of the 3D measurements between the pre-operative plan and the post-operative 3D images were evaluated in the plan group.
For the accuracy of the implant choices, the ICCs for the screw lengths between the preoperative plan and the actual choices were evaluated. According to the previous recommendation12, ICC less than 0.40 was considered poor reproducibility, between 0.40 and 0.59 was considered moderate, between 0.60 and 0.74 was considered good, and between 0.75 and 1.00 was considered excellent. The differences between preoperative plan and postoperative reductions, healthy side and injured side after surgery were analyzed using the paired t-test. P values of \<0.05 were considered significant. All analyses were performed using SPSS version 13.0 (SPSS, Chicago, IL, USA).
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Plan group
3D preoperative planning for the distal radius fracture was performed prior to the osteosynthesis.
Preoperative planning
preoperative planning using 3D digital planning software or conventional template
Osteosynthesis
osteosynthesis using volar locking plate
Control group
Conventional preoperative planning for the distal radius fracture was performed prior to the osteosynthesis.
Preoperative planning
preoperative planning using 3D digital planning software or conventional template
Osteosynthesis
osteosynthesis using volar locking plate
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Preoperative planning
preoperative planning using 3D digital planning software or conventional template
Osteosynthesis
osteosynthesis using volar locking plate
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Tokyo Medical University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Yuichi Yoshii
Associate Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Yuichi Yoshii
Role: PRINCIPAL_INVESTIGATOR
Tokyo Medical University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Tokyo Medical University Ibaraki Medical Center
Ami, Ibaraki, Japan
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Yoshii Y, Ogawa T, Shigi A, Oka K, Murase T, Ishii T. Three-dimensional evaluations of preoperative planning reproducibility for the osteosynthesis of distal radius fractures. J Orthop Surg Res. 2021 Feb 12;16(1):131. doi: 10.1186/s13018-021-02278-9.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
14-21
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.