Characterization of Independant Task Neural Correlates of Different Levels of Mental Workload
NCT ID: NCT02843919
Last Updated: 2018-10-12
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
TERMINATED
NA
19 participants
INTERVENTIONAL
2014-12-31
2017-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
In parallel, there will be a methodological work consisting to develop the classification algorithms, predictives of these levels of mental workload in real time, in purpose to implement a passive brain-machine interface in the best interest of operators that accomplish complex tasks.
Mesures of electro-physiological activity will be recorded in order to approve states of charge in addition to behavioral performances.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Tracking Information Flow in the Brain
NCT04175119
Development of MRI Protocols and Associated Explorations (EEG, NIRS) in Healthy Volunteers
NCT03152539
Development of MRI Protocols and Associated Explorations (EEG, NIRS) in Voluntary Patients
NCT03160235
Measuring the Latency Connectome in the Central Nervous Systems Using Neuroimaging and Neurophysiological Techniques
NCT03223636
Investigation of Oscillations Underlying Human Cognitive and Affective Processing Using Intracranial EEG
NCT03268694
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Healthy volunteers
Adults healthy volunteers
Electroencephalography and Electrocardiography
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Electroencephalography and Electrocardiography
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Medical examination made before search involvement
* Between 20 and 40 years
* Right-handed
* Minimum study level : Baccalauréat
* Membership of the French social security
* Normal vision and hearing (or corrected to normal)
Exclusion Criteria
* Vision or hearing essential disorder
* Neurological or neuropsychiatric pathology current or gone
* Drug treatment which could alter brain activity (antidepressants, benzodiazepine, lithium etc)
* Pregnant, parturient or breast feeding women
* All other category of protected people
20 Years
40 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University Hospital, Grenoble
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Laurent Verceuil, Doctor
Role: PRINCIPAL_INVESTIGATOR
Grenoble Hospital University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
UniversityHospitalGrenoble
La Tronche, , France
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Akerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual. Int J Neurosci. 1990 May;52(1-2):29-37. doi: 10.3109/00207459008994241.
Allison BZ, Polich J. Workload assessment of computer gaming using a single-stimulus event-related potential paradigm. Biol Psychol. 2008 Mar;77(3):277-83. doi: 10.1016/j.biopsycho.2007.10.014. Epub 2007 Nov 4.
Antonenko, P., Paas, F., Grabner, R., & Gog, T. (2010). Using Electroencephalography to Measure Cognitive Load. Educational Psychology Review, 22, 425-438.
Baldwin CL, Penaranda BN. Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification. Neuroimage. 2012 Jan 2;59(1):48-56. doi: 10.1016/j.neuroimage.2011.07.047. Epub 2011 Jul 30.
Barachant, A. (2012) Commande robuste d'un effecteur par une interface cerveau-machine EEG asynchrone. (Unpublished doctoral dissertation). Université de Grenoble, Grenoble, France.
Bashashati A, Fatourechi M, Ward RK, Birch GE. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J Neural Eng. 2007 Jun;4(2):R32-57. doi: 10.1088/1741-2560/4/2/R03. Epub 2007 Mar 27.
Berka C, Levendowski DJ, Lumicao MN, Yau A, Davis G, Zivkovic VT, Olmstead RE, Tremoulet PD, Craven PL. EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat Space Environ Med. 2007 May;78(5 Suppl):B231-44.
Besserve, M., Martinerie, J., & Garnero, L. (2008). Non-invasive classification of cortical activities for brain computer interface: A variable selection approach (p. 1063-1066). IEEE.
Brouwer AM, Hogervorst MA, van Erp JB, Heffelaar T, Zimmerman PH, Oostenveld R. Estimating workload using EEG spectral power and ERPs in the n-back task. J Neural Eng. 2012 Aug;9(4):045008. doi: 10.1088/1741-2560/9/4/045008. Epub 2012 Jul 25.
Cain, B. (2007) "A review of the mental workload literature 1.0".
Christensen JC, Estepp JR, Wilson GF, Russell CA. The effects of day-to-day variability of physiological data on operator functional state classification. Neuroimage. 2012 Jan 2;59(1):57-63. doi: 10.1016/j.neuroimage.2011.07.091. Epub 2011 Aug 5.
Comstock, J. R., Jr., & Arnegard, R. J. (1992) The Multi-Attribute Task Battery for human operator workload and strategic behavior research (NASA TM-104174). Hampton, Virginia: NASA Langley Research Center.
Dussault C, Jouanin JC, Philippe M, Guezennec CY. EEG and ECG changes during simulator operation reflect mental workload and vigilance. Aviat Space Environ Med. 2005 Apr;76(4):344-51.
Fu, S. & Parasuraman, R. (2007) Event-related potentials (ERPs) in Neuroergonomics. . In Parasuraman, R. & Rizzo, M. (Eds), Neuroergonomics: The brain at work (pp. 15-31). New York, NY: Oxford University Press, Inc.
George, L., & Lécuyer, A. (2010). An overview of research on " passive " brain-computer interfaces for implicit human-computer interaction. International Conference on Applied Bionics and Biomechanics (ICABB), Venice, Italy, October 14-16, 2010.
Gevins A, Smith ME. Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb Cortex. 2000 Sep;10(9):829-39. doi: 10.1093/cercor/10.9.829.
Gevins, A., & Smith, M. E. (2003). Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical Issues in Ergonomics Science, 1, 113-131.
Gevins, A. & Smith, M. E. (2007) Electroencephalography (EEG) in Neuroergnomics. In Parasuraman, R. & Rizzo, M. (Eds), Neuroergonomics: The brain at work (pp. 15-31). New York, NY: Oxford University Press, Inc.
Gomarus HK, Althaus M, Wijers AA, Minderaa RB. The effects of memory load and stimulus relevance on the EEG during a visual selective memory search task: an ERP and ERD/ERS study. Clin Neurophysiol. 2006 Apr;117(4):871-84. doi: 10.1016/j.clinph.2005.12.008. Epub 2006 Jan 25.
Graimann, B, Allison, B. & Pfurstscheller, G. (2010) Brain-computer interfaces: A gentle introduction. In Graimann, B, Allison, B. & Pfurstscheller, G. (Eds) Brain-computer interfaces: Revolutionizing human-computer interaction, (pp. 1-28), Berlin Heidelberg, Springer-Verlag.
Grimes, D., Tan, D. S., Hudson, S. E., Shenoy, P., & Rao, R. P. N. (2008). Feasibility and pragmatics of classifying working memory load with an electroencephalograph (p. 835). ACM Press.
Heger, D., Putze, F., & Schultz, T. (2010). Online workload recognition from EEG data during cognitive tests and human-machine interaction. KI 2010: Advances in Artificial Intelligence, 410-417.
Henelius A, Hirvonen K, Holm A, Korpela J, Muller K. Mental workload classification using heart rate metrics. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1836-9. doi: 10.1109/IEMBS.2009.5332602.
Holland MK, Tarlow G. Blinking and mental load. Psychol Rep. 1972 Aug;31(1):119-27. doi: 10.2466/pr0.1972.31.1.119. No abstract available.
Holm A, Lukander K, Korpela J, Sallinen M, Muller KM. Estimating brain load from the EEG. ScientificWorldJournal. 2009 Jul 14;9:639-51. doi: 10.1100/tsw.2009.83.
Honal, M., & Schultz, T. (2008). Determine task demand from brain activity. In Proceedings of the 3rd International Conference on Bio-inspired Systems and Signal Processing.
Kahol K, Smith M, Brandenberger J, Ashby A, Ferrara JJ. Impact of fatigue on neurophysiologic measures of surgical residents. J Am Coll Surg. 2011 Jul;213(1):29-34; discussion 34-6. doi: 10.1016/j.jamcollsurg.2011.03.028. Epub 2011 Apr 23.
KIRCHNER WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol. 1958 Apr;55(4):352-8. doi: 10.1037/h0043688. No abstract available.
Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology. 2001 May;38(3):557-77. doi: 10.1017/s0048577201990559.
Koles ZJ, Flor-Henry P. Mental activity and the e.e.g.: task and workload related effects. Med Biol Eng Comput. 1981 Mar;19(2):185-94. doi: 10.1007/BF02442714. No abstract available.
D. Levendowsk, Z. Konstantinovic, R. Olmstead, and C. Berka (2000). Method for the quantification of human alertness, patent.
Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng. 2007 Jun;4(2):R1-R13. doi: 10.1088/1741-2560/4/2/R01. Epub 2007 Jan 31.
McDonald NJ, Soussou W. QUASAR's QStates cognitive gauge performance in the cognitive state assessment competition 2011. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6542-6. doi: 10.1109/IEMBS.2011.6091614.
Miller MW, Rietschel JC, McDonald CG, Hatfield BD. A novel approach to the physiological measurement of mental workload. Int J Psychophysiol. 2011 Apr;80(1):75-8. doi: 10.1016/j.ijpsycho.2011.02.003. Epub 2011 Feb 20.
Missonnier P, Deiber MP, Gold G, Millet P, Gex-Fabry Pun M, Fazio-Costa L, Giannakopoulos P, Ibanez V. Frontal theta event-related synchronization: comparison of directed attention and working memory load effects. J Neural Transm (Vienna). 2006 Oct;113(10):1477-86. doi: 10.1007/s00702-005-0443-9. Epub 2006 Apr 11.
Natani, K., & Gomer, F. E. (1981). Electrocortical activity and operator workload: A comparison of changes in the electroencephalogram and in event-related potentials. (McDonnell Douglas Technical Report E2427). Long Beach, CA: McDonnell Douglas Corporation.
Nourbakhsh, N., Wang, Y., & Chen, F. (2013). GSR and Blink Features for Cognitive Load Classification. In P. Kotzé, G. Marsden, G. Lindgaard, J. Wesson, & M. Winckler (Éd.), Human-Computer Interaction - INTERACT 2013 (Vol. 8117, p. 159-166). Berlin, Heidelberg: Springer Berlin Heidelberg.
Ossandon T, Jerbi K, Vidal JR, Bayle DJ, Henaff MA, Jung J, Minotti L, Bertrand O, Kahane P, Lachaux JP. Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance. J Neurosci. 2011 Oct 12;31(41):14521-30. doi: 10.1523/JNEUROSCI.2483-11.2011.
Putze, F., Jarvis, J. P., & Schultz, T. (2010) Multimodal Recognition of Cognitive Workload for Multitasking in the Car. International Conference on Pattern Recognition (ICPR), 20, 3748-3751.
Schober F, Schellenberg R, Dimpfel W. Reflection of mental exercise in the dynamic quantitative topographical EEG. Neuropsychobiology. 1995;31(2):98-112. doi: 10.1159/000119179.
Schultheis, H. & Jameson, A. (2004) Assessing Cognitive Load in Adaptive Hypermedia Systems: Physiological and Behavioral Methods. Lecture Notes in Computer Science, 313, 225-234.
Sternberg S. High-speed scanning in human memory. Science. 1966 Aug 5;153(3736):652-4. doi: 10.1126/science.153.3736.652.
Sternberg S. Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci. 1969 Winter;57(4):421-57. No abstract available.
Tanaka Y, Yamaoka K. Blink activity and task difficulty. Percept Mot Skills. 1993 Aug;77(1):55-66. doi: 10.2466/pms.1993.77.1.55.
Tremoulet, P. D., Craven, P. L., Regli, S. H., Wilcox, S., Barton, J., Stibler and K., Clark, M. (2009). Workload-Based Assessment of a User Interface Design. In V. G. Duffy (Éd.), Digital Human Modeling (Vol. 5620, p. 333-342). Berlin, Heidelberg: Springer Berlin Heidelberg.
Veltman JA, Gaillard AW. Physiological indices of workload in a simulated flight task. Biol Psychol. 1996 Feb 5;42(3):323-42. doi: 10.1016/0301-0511(95)05165-1.
Wang Z, Hope RM, Wang Z, Ji Q, Gray WD. Cross-subject workload classification with a hierarchical Bayes model. Neuroimage. 2012 Jan 2;59(1):64-9. doi: 10.1016/j.neuroimage.2011.07.094. Epub 2011 Aug 16.
Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002 Jun;113(6):767-91. doi: 10.1016/s1388-2457(02)00057-3.
Zander, T.O., Kothe, C., Jatzev, S. & Gaertner, M. (2010) Enhancing human-computer interaction with input from active and passive brain-computer interfaces. In Tan, D.S. & Nijholt, A. (Eds) Brain-computer interfaces: Applying our minds to human-computer interaction (pp. 181-196), London, Springer-Verlag.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
38RC14.009
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.