Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
20 participants
INTERVENTIONAL
2012-12-31
2014-03-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Design and Evaluation the Effects of Kinect-based Computer Games for U/E Training in Chronic Stroke Patients
NCT03229733
Rehabilitation Effects on Balance With Kinect for Xbox Virtual Reality Games
NCT02735265
Kinect-based Upper Limb Rehabilitation System in Stroke Patients
NCT02066116
Virtual Rehabilitation and Conventional Therapeutic Exercises in the Treatment of Individuals Post Stroke
NCT02715817
Implementing Technology Enhanced Real Time Action Observation Therapy in Persons With Chronic Stroke
NCT03780296
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Xbox Kinect™ training group
60 minutes/day, 5 days/week, 4 weeks (20 sessions) conventional rehabilitation program plus 60 minutes/day, 5 days/week, 4 weeks (20 sessions) Xbox Kinect™ upper extremity training. Two games both of which require using upper extremities, were chosen and each game was played for 30 minutes per session.
Xbox Kinect™ training
Xbox Kinect™ (Xbox 360, Microsoft, United States) game console which is one of the commercial interactive game consoles was used. It was comprised of 3 components; Kinect™ sensor, Xbox 360™ game console and 42 inch Liquid crystal display (LCD) television.
Conventional rehabilitation group
60 minutes/day, 5 days/week, 4 weeks (20 sessions) conventional rehabilitation program only. The treatment protocol was individualized according to the goals which were determined depending on each patient's needs and functional level.
Conventional rehabilitation
The conventional rehabilitation program consisted of passive and active range of motion exercises, therapeutic stretching, muscle strengthening, neurophysiologic exercises, sitting, standing, balance and gait exercises, occupational therapy and activities of daily living training such as eating, grooming, dressing, toileting and transfer.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Xbox Kinect™ training
Xbox Kinect™ (Xbox 360, Microsoft, United States) game console which is one of the commercial interactive game consoles was used. It was comprised of 3 components; Kinect™ sensor, Xbox 360™ game console and 42 inch Liquid crystal display (LCD) television.
Conventional rehabilitation
The conventional rehabilitation program consisted of passive and active range of motion exercises, therapeutic stretching, muscle strengthening, neurophysiologic exercises, sitting, standing, balance and gait exercises, occupational therapy and activities of daily living training such as eating, grooming, dressing, toileting and transfer.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Between 18 and 80 years of age
* Brunnstrom motor recovery stage in the affected upper extremity ≥ 3
* Ability to understand and follow simple explanations and commands
* Mini-Mental State Examination score of ≥ 24
Exclusion Criteria
* Arthritis or pain restricting the repetitive training of the affected upper extremity
* Severe aphasia
* Neglect phenomena
* Cognitive or psychiatric disorders
* ≥ Grade 3 spasticity in the affected upper extremity according to Modified Ashworth Scale
* Medical conditions which may affect physical performance or the physical activity may become unsafe (unstable angina, myocardial infarction within the last 3 months, uncontrolled blood pressure, pulmonary disease, etc.)
* Participation in another clinical trial
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Ankara University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Haydar Gok
Professor of Physical Medicine and Rehabilitation
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Haydar GOK, Professor
Role: PRINCIPAL_INVESTIGATOR
Ankara University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Ankara University Faculty of Medicine, Cebeci Research and Application Hospital
Ankara, Ankara, Turkey (Türkiye)
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Edmans J, Gladman J, Hilton D, Walker M, Sunderland A, Cobb S, Pridmore T, Thomas S. Clinical evaluation of a non-immersive virtual environment in stroke rehabilitation. Clin Rehabil. 2009 Feb;23(2):106-16. doi: 10.1177/0269215508095875.
Crosbie JH, Lennon S, Basford JR, McDonough SM. Virtual reality in stroke rehabilitation: still more virtual than real. Disabil Rehabil. 2007 Jul 30;29(14):1139-46; discussion 1147-52. doi: 10.1080/09638280600960909.
Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2015 Feb 12;2015(2):CD008349. doi: 10.1002/14651858.CD008349.pub3.
Paquin K, Ali S, Carr K, Crawley J, McGowan C, Horton S. Effectiveness of commercial video gaming on fine motor control in chronic stroke within community-level rehabilitation. Disabil Rehabil. 2015;37(23):2184-91. doi: 10.3109/09638288.2014.1002574. Epub 2015 Jan 14.
Sveistrup H. Motor rehabilitation using virtual reality. J Neuroeng Rehabil. 2004 Dec 10;1(1):10. doi: 10.1186/1743-0003-1-10.
Pietrzak E, Cotea C, Pullman S. Using commercial video games for upper limb stroke rehabilitation: is this the way of the future? Top Stroke Rehabil. 2014 Mar-Apr;21(2):152-62. doi: 10.1310/tsr2102-152.
Thomson K, Pollock A, Bugge C, Brady M. Commercial gaming devices for stroke upper limb rehabilitation: a systematic review. Int J Stroke. 2014 Jun;9(4):479-88. doi: 10.1111/ijs.12263. Epub 2014 Mar 24.
Bower KJ, Clark RA, McGinley JL, Martin CL, Miller KJ. Clinical feasibility of the Nintendo Wii for balance training post-stroke: a phase II randomized controlled trial in an inpatient setting. Clin Rehabil. 2014 Sep;28(9):912-23. doi: 10.1177/0269215514527597. Epub 2014 Mar 25.
Pastor I, Hayes HA, Bamberg SJ. A feasibility study of an upper limb rehabilitation system using Kinect and computer games. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1286-9. doi: 10.1109/EMBC.2012.6346173.
Hors-Fraile S, Browne J, Brox E, Evertsen G. Evaluation of sensors for inputting data in exergames for the elderly. Stud Health Technol Inform. 2013;192:935.
Sin H, Lee G. Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. Am J Phys Med Rehabil. 2013 Oct;92(10):871-80. doi: 10.1097/PHM.0b013e3182a38e40.
Lee G. Effects of training using video games on the muscle strength, muscle tone, and activities of daily living of chronic stroke patients. J Phys Ther Sci. 2013 May;25(5):595-7. doi: 10.1589/jpts.25.595. Epub 2013 Jun 29.
Fernandes AB, Passos JO, Brito DP, Campos TF. Comparison of the immediate effect of the training with a virtual reality game in stroke patients according side brain injury. NeuroRehabilitation. 2014;35(1):39-45. doi: 10.3233/NRE-141105.
Bao X, Mao Y, Lin Q, Qiu Y, Chen S, Li L, Cates RS, Zhou S, Huang D. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen Res. 2013 Nov 5;8(31):2904-13. doi: 10.3969/j.issn.1673-5374.2013.31.003.
Song GB, Park EC. Effect of virtual reality games on stroke patients' balance, gait, depression, and interpersonal relationships. J Phys Ther Sci. 2015 Jul;27(7):2057-60. doi: 10.1589/jpts.27.2057. Epub 2015 Jul 22.
Rajaratnam BS, Gui Kaien J, Lee Jialin K, Sweesin K, Sim Fenru S, Enting L, Ang Yihsia E, Keathwee N, Yunfeng S, Woo Yinghowe W, Teo Siaoting S. Does the Inclusion of Virtual Reality Games within Conventional Rehabilitation Enhance Balance Retraining after a Recent Episode of Stroke? Rehabil Res Pract. 2013;2013:649561. doi: 10.1155/2013/649561. Epub 2013 Aug 18.
Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987 Feb;67(2):206-7. doi: 10.1093/ptj/67.2.206.
Gregson JM, Leathley M, Moore AP, Sharma AK, Smith TL, Watkins CL. Reliability of the Tone Assessment Scale and the modified Ashworth scale as clinical tools for assessing poststroke spasticity. Arch Phys Med Rehabil. 1999 Sep;80(9):1013-6. doi: 10.1016/s0003-9993(99)90053-9.
Desrosiers J, Bravo G, Hebert R, Dutil E, Mercier L. Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil. 1994 Jul;75(7):751-5.
Ahmed S, Mayo NE, Higgins J, Salbach NM, Finch L, Wood-Dauphinee SL. The Stroke Rehabilitation Assessment of Movement (STREAM): a comparison with other measures used to evaluate effects of stroke and rehabilitation. Phys Ther. 2003 Jul;83(7):617-30.
Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989 May;104(2):125-32. doi: 10.1016/s0014-4886(89)80005-6.
Wolf SL, Thompson PA, Morris DM, Rose DK, Winstein CJ, Taub E, Giuliani C, Pearson SL. The EXCITE trial: attributes of the Wolf Motor Function Test in patients with subacute stroke. Neurorehabil Neural Repair. 2005 Sep;19(3):194-205. doi: 10.1177/1545968305276663.
Morris DM, Uswatte G, Crago JE, Cook EW 3rd, Taub E. The reliability of the wolf motor function test for assessing upper extremity function after stroke. Arch Phys Med Rehabil. 2001 Jun;82(6):750-5. doi: 10.1053/apmr.2001.23183.
Kucukdeveci AA, Yavuzer G, Elhan AH, Sonel B, Tennant A. Adaptation of the Functional Independence Measure for use in Turkey. Clin Rehabil. 2001 Jun;15(3):311-9. doi: 10.1191/026921501676877265.
Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81.
Dobkin BH. Training and exercise to drive poststroke recovery. Nat Clin Pract Neurol. 2008 Feb;4(2):76-85. doi: 10.1038/ncpneuro0709.
Bower KJ, Louie J, Landesrocha Y, Seedy P, Gorelik A, Bernhardt J. Clinical feasibility of interactive motion-controlled games for stroke rehabilitation. J Neuroeng Rehabil. 2015 Aug 2;12:63. doi: 10.1186/s12984-015-0057-x.
Saposnik G, Teasell R, Mamdani M, Hall J, McIlroy W, Cheung D, Thorpe KE, Cohen LG, Bayley M; Stroke Outcome Research Canada (SORCan) Working Group. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke. 2010 Jul;41(7):1477-84. doi: 10.1161/STROKEAHA.110.584979. Epub 2010 May 27.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
20-645-12
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.