Rehabilitation Effects on Balance With Kinect for Xbox Virtual Reality Games
NCT ID: NCT02735265
Last Updated: 2016-04-12
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
60 participants
INTERVENTIONAL
2015-02-28
2016-02-29
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Study will use Kinect for Xbox games for balance intervention. Investigators will recruit 60 patients with chronic stroke from Shung-ho hospital clinical rehabilitation and randomly assign participants to "standard treatment plus virtual reality group" (N=30) and "standard treatment only group" (N=30). There are total 12 sessions (2 times weekly) for both groups. Investigators will assess subjects' ability for 3 times (pre- and post-intervention, follow up in post 3 month).Investigators will also record the pleasure scale and adverse event after every training session. Hypothesis is that Kinect for Xbox intervention can significantly improve subjects' balance ability, confidence of balance, ADL, and QOL compared to the conventional rehabilitation. It may help to develop a new clinical model of virtual reality training for patients with chronic stroke.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Xbox Kinect™ Training for Stroke Rehabilitation
NCT02759328
Rapid Movement Therapy for Stroke Rehabilitation
NCT03183635
Design and Evaluation the Effects of Kinect-based Computer Games for U/E Training in Chronic Stroke Patients
NCT03229733
Effects of Wearable Sensor Based Virtual Reality Game on Balance for Stroke
NCT04297774
Exploring the Effectiveness of Sensor-based Balance Training on Patient Outcome Measures
NCT02777060
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The study will use Kinect for Xbox games for balance intervention. Kinect for Xbox doesn't need additional controller held by subjects and can detect the movement in real time to give subjects visual and auditory feedback immediately. Investigators will recruit 60 patients with chronic stroke from Shung-ho hospital clinical rehabilitation and randomly assign them to "standard treatment plus virtual reality group" (N=30) and "standard treatment only group" (N=30). There are total 12 sessions (2 times weekly) for both groups. Investigators will assess subjects' ability for 3 times (pre- and post-intervention, follow up in post 3 month). The outcome measures include Force plate, Functional reach test, Berg Balance Scale, Time up and go for balance evaluations, Modified barthel index for ADL ability, Activities-specific Balance Confidence scale for balance confidence, and Stroke Impact Scale for quality of life. Investigators will also record the pleasure scale and adverse event after every training session. Collected data will be analyzed with repeated measures 2-way analysis of variance (ANOVA), Turkey test post hoc and independent T sample test. Hypothesis is that Kinect for Xbox intervention can significantly improve subjects' balance ability, confidence of balance, ADL, and QOL compared to the conventional rehabilitation. It may help to develop a new clinical model of virtual reality training for patients with chronic stroke.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Virtual reality group
45 min standard treatment plus 45 min virtual reality balance training used by Kinect for Xbox game. Game choosed based on motor learning principle. Training task such as reach or stepping in various direction, squat, stand up, upper trunk forward or lateral bench.
Virtual reality
12 training sessions (90 minutes a time, 2 times a week) IG:45 minute of Kinect for Xbox games and 45 minute of standard treatment.
Standard treatment
CG: 90 minute of standard treatment. 12 training sessions (90 minutes a time, 2 times a week)
Standard treatment only group
90 min standard treatment. Depended on patient's ability, principle used by motor learning, sensory process, motor control, task oriented training, symmetry w't bearing.
Standard treatment
CG: 90 minute of standard treatment. 12 training sessions (90 minutes a time, 2 times a week)
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Virtual reality
12 training sessions (90 minutes a time, 2 times a week) IG:45 minute of Kinect for Xbox games and 45 minute of standard treatment.
Standard treatment
CG: 90 minute of standard treatment. 12 training sessions (90 minutes a time, 2 times a week)
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Could understand game command
* Could stand unsupported or stand with advice at least 15 minute
* Brunnstrom stage of LE ≥Ⅲ
Exclusion Criteria
* Severe visual or auditory impairment
* Modified Ashworth Scale of LE ≥ 3
* The Montreal Cognitive Assessment\<16
* Other medication(neural, cardio-pulmonary, musculoskeletal) that influence motor command during the game
20 Years
75 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Taipei Medical University Shuang Ho Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Hsinchieh Lee, master
Role: STUDY_CHAIR
Taipei Medical University, Taiwan, R.O.C.
References
Explore related publications, articles, or registry entries linked to this study.
Celinder D, Peoples H. Stroke patients' experiences with Wii Sports(R) during inpatient rehabilitation. Scand J Occup Ther. 2012 Sep;19(5):457-63. doi: 10.3109/11038128.2012.655307. Epub 2012 Feb 20.
Cho K, Lee G. Impaired dynamic balance is associated with falling in post-stroke patients. Tohoku J Exp Med. 2013 Aug;230(4):233-9. doi: 10.1620/tjem.230.233.
Cho KH, Lee KJ, Song CH. Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients. Tohoku J Exp Med. 2012 Sep;228(1):69-74. doi: 10.1620/tjem.228.69.
Cuthbert JP, Staniszewski K, Hays K, Gerber D, Natale A, O'Dell D. Virtual reality-based therapy for the treatment of balance deficits in patients receiving inpatient rehabilitation for traumatic brain injury. Brain Inj. 2014;28(2):181-8. doi: 10.3109/02699052.2013.860475.
Deutsch J, R. D., Morrison J, Guarrera Bowlby P ( 2009). Wii-Based Compared to Standard of Care Balance and Mobility Rehabilitation for Two Individuals Post-Stroke. 117-120.
Deutsch JE. Using virtual reality to improve walking post-stroke: translation to individuals with diabetes. J Diabetes Sci Technol. 2011 Mar 1;5(2):309-14. doi: 10.1177/193229681100500216.
Deutsch JE, Borbely M, Filler J, Huhn K, Guarrera-Bowlby P. Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Phys Ther. 2008 Oct;88(10):1196-207. doi: 10.2522/ptj.20080062. Epub 2008 Aug 8.
Deutsch JE, Brettler A, Smith C, Welsh J, John R, Guarrera-Bowlby P, Kafri M. Nintendo wii sports and wii fit game analysis, validation, and application to stroke rehabilitation. Top Stroke Rehabil. 2011 Nov-Dec;18(6):701-19. doi: 10.1310/tsr1806-701.
Deutsch JE, R. D., Morrison J, Guarrera Bowlby P (2009). Wii-Based Compared to Standard of Care Balance and Mobility Rehabilitation for Two Individuals Post-Stroke. In Virtual Rehabilitation International Conference; Haifa., 117-120.
Gil-Gomez JA, Llorens R, Alcaniz M, Colomer C. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. J Neuroeng Rehabil. 2011 May 23;8:30. doi: 10.1186/1743-0003-8-30.
Kim JH, Jang SH, Kim CS, Jung JH, You JH. Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study. Am J Phys Med Rehabil. 2009 Sep;88(9):693-701. doi: 10.1097/PHM.0b013e3181b33350.
Kizony R, Levin MF, Hughey L, Perez C, Fung J. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment. Phys Ther. 2010 Feb;90(2):252-60. doi: 10.2522/ptj.20090061. Epub 2009 Dec 18.
Kizony R, Raz L, Katz N, Weingarden H, Weiss PL. Video-capture virtual reality system for patients with paraplegic spinal cord injury. J Rehabil Res Dev. 2005 Sep-Oct;42(5):595-608. doi: 10.1682/jrrd.2005.01.0023.
Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ, Grasby PM. Evidence for striatal dopamine release during a video game. Nature. 1998 May 21;393(6682):266-8. doi: 10.1038/30498.
Lange B, Flynn S, Proffitt R, Chang CY, Rizzo AS. Development of an interactive game-based rehabilitation tool for dynamic balance training. Top Stroke Rehabil. 2010 Sep-Oct;17(5):345-52. doi: 10.1310/tsr1705-345.
Lange, B., Flynn, S., & Rizzo, A. (2009). Initial usability assessment of off-the-shelf video game consoles for clinical game-based motor rehabilitation. Physical Therapy Reviews, 14(5), 355.
Larsen CR, Soerensen JL, Grantcharov TP, Dalsgaard T, Schouenborg L, Ottosen C, Schroeder TV, Ottesen BS. Effect of virtual reality training on laparoscopic surgery: randomised controlled trial. BMJ. 2009 May 14;338:b1802. doi: 10.1136/bmj.b1802.
Laver K, George S, Thomas S, Deutsch JE, Crotty M. Cochrane review: virtual reality for stroke rehabilitation. Eur J Phys Rehabil Med. 2012 Sep;48(3):523-30. Epub 2012 Jun 20.
Lee G. Effects of training using video games on the muscle strength, muscle tone, and activities of daily living of chronic stroke patients. J Phys Ther Sci. 2013 May;25(5):595-7. doi: 10.1589/jpts.25.595. Epub 2013 Jun 29.
Lintern G, R. S., Koonce J, Segal L (1990). Display principles,control dynamics and environmental factors in pilot training and transfer. . Human Factors, 32, 299-317.
Lohse K, Shirzad N, Verster A, Hodges N, Van der Loos HF. Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J Neurol Phys Ther. 2013 Dec;37(4):166-75. doi: 10.1097/NPT.0000000000000017.
Michael KM, Allen JK, Macko RF. Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness. Arch Phys Med Rehabil. 2005 Aug;86(8):1552-6. doi: 10.1016/j.apmr.2004.12.026.
Parry I, Carbullido C, Kawada J, Bagley A, Sen S, Greenhalgh D, Palmieri T. Keeping up with video game technology: objective analysis of Xbox Kinect and PlayStation 3 Move for use in burn rehabilitation. Burns. 2014 Aug;40(5):852-9. doi: 10.1016/j.burns.2013.11.005. Epub 2013 Dec 2.
Peters DM, McPherson AK, Fletcher B, McClenaghan BA, Fritz SL. Counting repetitions: an observational study of video game play in people with chronic poststroke hemiparesis. J Neurol Phys Ther. 2013 Sep;37(3):105-11. doi: 10.1097/NPT.0b013e31829ee9bc.
Pichierri G, Wolf P, Murer K, de Bruin ED. Cognitive and cognitive-motor interventions affecting physical functioning: a systematic review. BMC Geriatr. 2011 Jun 8;11:29. doi: 10.1186/1471-2318-11-29.
Schultheis M, R. A. (2001). The application of virtual reality technology in rehabilitation. Rehabilitation Psychology, 46, 296-311.
Shin JH, Ryu H, Jang SH. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. J Neuroeng Rehabil. 2014 Mar 6;11:32. doi: 10.1186/1743-0003-11-32.
Sin H, Lee G. Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. Am J Phys Med Rehabil. 2013 Oct;92(10):871-80. doi: 10.1097/PHM.0b013e3182a38e40.
Singh, D. K. A., Nordin, N. A.M., Aziz,N. A., Zarim, S.N. A., Kooi, L. B., Ching, S. L. . (2014). Can virtual reality balance games enhance activities of daily living among stroke survivors? BMC Public Health, 14, 1.
Smith, C., Read, J., Bennie, C., Hale, L., & Milosavljevic, S. (2012). Can non-immersive virtual reality improve physical outcomes of rehabilitation? Physical Therapy Reviews, 17(1), 1-15.
Ustinova KI, Perkins J, Leonard WA, Hausbeck CJ. Virtual reality game-based therapy for treatment of postural and co-ordination abnormalities secondary to TBI: a pilot study. Brain Inj. 2014;28(4):486-95. doi: 10.3109/02699052.2014.888593. Epub 2014 Apr 4.
Vernadakis N, Derri V, Tsitskari E, Antoniou P. The effect of Xbox Kinect intervention on balance ability for previously injured young competitive male athletes: a preliminary study. Phys Ther Sport. 2014 Aug;15(3):148-55. doi: 10.1016/j.ptsp.2013.08.004. Epub 2013 Sep 4.
Wuest S, van de Langenberg R, de Bruin ED. Design considerations for a theory-driven exergame-based rehabilitation program to improve walking of persons with stroke. Eur Rev Aging Phys Act. 2014;11(2):119-129. doi: 10.1007/s11556-013-0136-6. Epub 2013 Dec 7.
Yong Joo L, Soon Yin T, Xu D, Thia E, Pei Fen C, Kuah CW, Kong KH. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. J Rehabil Med. 2010 May;42(5):437-41. doi: 10.2340/16501977-0528.
You SH, Jang SH, Kim YH, Hallett M, Ahn SH, Kwon YH, Kim JH, Lee MY. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke. 2005 Jun;36(6):1166-71. doi: 10.1161/01.STR.0000162715.43417.91. Epub 2005 May 12.
Zhang L, Abreu BC, Seale GS, Masel B, Christiansen CH, Ottenbacher KJ. A virtual reality environment for evaluation of a daily living skill in brain injury rehabilitation: reliability and validity. Arch Phys Med Rehabil. 2003 Aug;84(8):1118-24. doi: 10.1016/s0003-9993(03)00203-x.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
TMU-JIRB 201412023
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.