Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
20 participants
INTERVENTIONAL
2014-03-31
2016-01-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Pharmacokinetics and Pharmacodynamics of Extended-Infusion Cefepime in Continuous Renal Replacement Therapy
NCT02458261
Target Attainment of Cefuroxim
NCT05200975
Evaluation of the Optimal Technique for Determination of Renal Function of Critically Ill Patients
NCT00117390
Pharmacokinetic Evaluation of Fluoroquinolone Antibiotics Administered Intravenously in Intensive Care Patients With Normal Renal Function and With Renal Hyperfiltration
NCT01109823
Uremic Toxins in the Intensive Care Unit (ICU): Patients With Sepsis
NCT00752245
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
In this study, a clinical trial was conducted to develop a population PK model for cefepime in critically ill patients assessing renal and non-renal clearance separately, based on both plasma and urinary cefepime concentrations. This model then served as a tool to compare the adequacy of six different renal markers as predictors for renal cefepime clearance. After integrating the most adequate predictor into the PK model, the final model was used to evaluate current dose recommendations for cefepime.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Study arm
* Cefepime dosing
* Blood sampling
* Urine sampling
* Determination of renal markers
* Population pharmacokinetic modeling
* Covariate screening
* Monte Carlo simulations
Cefepime dosing
Patients will received cefepime administered per standard-of-care as a 30 min intravenous infusion. Dosing will be based on local guidelines (the Sanford guide to antimicrobial therapy 2012-2013) using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine formula to estimate glomerular filtration rate (GFR).
Blood sampling
Blood will be sampled immediately prior to dose administration (time = 0 at the start of the 30 min infusion), at 0.5, 1, 3, 5 hours post-start of infusion and just before the subsequent dose. From day two onwards, samples will be taken at the end of the infusion and just before the next dose. For the quantification of cefepime, a validated solid phase extraction-liquid chromatography electrospray-tandem mass spectrometry method will be used.
Urine sampling
Timed urine collections were taken during one dosing interval (8 hours in a three times daily regimen) every day.
Determination of renal markers
Creatinine (modified Jaffe method) and urea in serum will be determined using an Architect c16000 analyzer (Abbott, Chicago, IL, USA). Cystatin C will be determined using a particle-enhanced immunonephelometric assay (N Latex Cystatin C, Siemens Healthcare Diagnostics, Marburg, Germany) by use of a BN II nephelometer (Siemens Healthcare Diagnostics). This assay has a calibration traceable to the first certified reference material for cystatin C in human serum (ERM-DA471/IFCC). Kidney injury molecule-1 (KIM-1) in urine and uromodulin in serum will be determined using commercially available ELISA assays: Quantikine ELISA Human TIM-1/KIM-1/HAVCR (R\&D Systems, Minneapolis, MN, USA) and Uromodulin ELISA (Euroimmun, Luebeck, Germany), respectively.
Population pharmacokinetic modeling
The cefepime concentration versus time data will be fitted using the FOCE-I estimation algorithm in NONMEM® (Version 7.3; GloboMax LLC, Hanover, MD, USA). R® (R foundation for statistical computing, Vienna, Austria) will be used to graphically assess the model's goodness-of-fit and to evaluate the model's predictive capabilities. As a measure of prediction error, the absolute prediction error (APE) will be used. In short, the measured cefepime concentrations for each individual i at time point j were compared against the population predicted cefepime concentrations, i.e. the predictions for each individual without taking into account the between-subject variability (PRED in NONMEM). The distribution of APEs will be summarized by the median and 90% percentile.
Covariate screening
Renal function will be assessed by four serum based kidney markers (serum creatinine, cystatin C, urea and uromodulin) and two urinary markers (measured creatinine clearance (CrCl) and KIM-1, both on timed urine collections). Serum creatinine and cystatin C will also be used to calculate the eGFR based on CKD-EPI formulas.
Monte Carlo simulations
Based on the final covariate model, a Monte Carlo-based simulation study will be performed to evaluate the Sanford dose recommendations for ICU patients.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Cefepime dosing
Patients will received cefepime administered per standard-of-care as a 30 min intravenous infusion. Dosing will be based on local guidelines (the Sanford guide to antimicrobial therapy 2012-2013) using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine formula to estimate glomerular filtration rate (GFR).
Blood sampling
Blood will be sampled immediately prior to dose administration (time = 0 at the start of the 30 min infusion), at 0.5, 1, 3, 5 hours post-start of infusion and just before the subsequent dose. From day two onwards, samples will be taken at the end of the infusion and just before the next dose. For the quantification of cefepime, a validated solid phase extraction-liquid chromatography electrospray-tandem mass spectrometry method will be used.
Urine sampling
Timed urine collections were taken during one dosing interval (8 hours in a three times daily regimen) every day.
Determination of renal markers
Creatinine (modified Jaffe method) and urea in serum will be determined using an Architect c16000 analyzer (Abbott, Chicago, IL, USA). Cystatin C will be determined using a particle-enhanced immunonephelometric assay (N Latex Cystatin C, Siemens Healthcare Diagnostics, Marburg, Germany) by use of a BN II nephelometer (Siemens Healthcare Diagnostics). This assay has a calibration traceable to the first certified reference material for cystatin C in human serum (ERM-DA471/IFCC). Kidney injury molecule-1 (KIM-1) in urine and uromodulin in serum will be determined using commercially available ELISA assays: Quantikine ELISA Human TIM-1/KIM-1/HAVCR (R\&D Systems, Minneapolis, MN, USA) and Uromodulin ELISA (Euroimmun, Luebeck, Germany), respectively.
Population pharmacokinetic modeling
The cefepime concentration versus time data will be fitted using the FOCE-I estimation algorithm in NONMEM® (Version 7.3; GloboMax LLC, Hanover, MD, USA). R® (R foundation for statistical computing, Vienna, Austria) will be used to graphically assess the model's goodness-of-fit and to evaluate the model's predictive capabilities. As a measure of prediction error, the absolute prediction error (APE) will be used. In short, the measured cefepime concentrations for each individual i at time point j were compared against the population predicted cefepime concentrations, i.e. the predictions for each individual without taking into account the between-subject variability (PRED in NONMEM). The distribution of APEs will be summarized by the median and 90% percentile.
Covariate screening
Renal function will be assessed by four serum based kidney markers (serum creatinine, cystatin C, urea and uromodulin) and two urinary markers (measured creatinine clearance (CrCl) and KIM-1, both on timed urine collections). Serum creatinine and cystatin C will also be used to calculate the eGFR based on CKD-EPI formulas.
Monte Carlo simulations
Based on the final covariate model, a Monte Carlo-based simulation study will be performed to evaluate the Sanford dose recommendations for ICU patients.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Hospitalized in the ICU of OLV hospital Aalst
* Elected by the treating physician to receive cefepime,irrespectively of the study
* Presence of arterial or central line for blood sampling
Exclusion Criteria
* No written informed consent by the patient or his/her (legal) representative
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University Ghent
OTHER
Onze Lieve Vrouw Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Stijn Jonckheere
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Stijn Jonckheere
Role: PRINCIPAL_INVESTIGATOR
Onze Lieve Vrouw Hospital
References
Explore related publications, articles, or registry entries linked to this study.
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013 Feb;41(2):580-637. doi: 10.1097/CCM.0b013e31827e83af.
Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009 Mar;37(3):840-51; quiz 859. doi: 10.1097/CCM.0b013e3181961bff.
Goncalves-Pereira J, Povoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of beta-lactams. Crit Care. 2011;15(5):R206. doi: 10.1186/cc10441. Epub 2011 Sep 13.
Sime FB, Roberts MS, Peake SL, Lipman J, Roberts JA. Does Beta-lactam Pharmacokinetic Variability in Critically Ill Patients Justify Therapeutic Drug Monitoring? A Systematic Review. Ann Intensive Care. 2012 Jul 28;2(1):35. doi: 10.1186/2110-5820-2-35.
Li C, Du X, Kuti JL, Nicolau DP. Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother. 2007 May;51(5):1725-30. doi: 10.1128/AAC.00294-06. Epub 2007 Feb 16.
McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008 Apr;31(4):345-51. doi: 10.1016/j.ijantimicag.2007.12.009. Epub 2008 Mar 4.
Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Kaukonen KM, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Lipman J; DALI Study. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014 Apr;58(8):1072-83. doi: 10.1093/cid/ciu027. Epub 2014 Jan 14.
Roberts JA, Kruger P, Paterson DL, Lipman J. Antibiotic resistance--what's dosing got to do with it? Crit Care Med. 2008 Aug;36(8):2433-40. doi: 10.1097/CCM.0b013e318180fe62.
Fantin B, Farinotti R, Thabaut A, Carbon C. Conditions for the emergence of resistance to cefpirome and ceftazidime in experimental endocarditis due to Pseudomonas aeruginosa. J Antimicrob Chemother. 1994 Mar;33(3):563-9. doi: 10.1093/jac/33.3.563.
Gugel J, Dos Santos Pereira A, Pignatari AC, Gales AC. beta-Lactam MICs correlate poorly with mutant prevention concentrations for clinical isolates of Acinetobacter spp. and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006 Jun;50(6):2276-7. doi: 10.1128/AAC.00144-06. No abstract available.
Fugate JE, Kalimullah EA, Hocker SE, Clark SL, Wijdicks EF, Rabinstein AA. Cefepime neurotoxicity in the intensive care unit: a cause of severe, underappreciated encephalopathy. Crit Care. 2013 Nov 7;17(6):R264. doi: 10.1186/cc13094.
Beumier M, Casu GS, Hites M, Wolff F, Cotton F, Vincent JL, Jacobs F, Taccone FS. Elevated beta-lactam concentrations associated with neurological deterioration in ICU septic patients. Minerva Anestesiol. 2015 May;81(5):497-506. Epub 2014 Sep 15.
Mani LY, Kissling S, Viceic D, Vogt B, Burnier M, Buclin T, Renard D. Intermittent hemodialysis treatment in cefepime-induced neurotoxicity: case report, pharmacokinetic modeling, and review of the literature. Hemodial Int. 2015 Apr;19(2):333-43. doi: 10.1111/hdi.12198. Epub 2014 Jul 23.
Kim A, Kim JE, Paek YM, Hong KS, Cho YJ, Cho JY, Park HK, Koo HK, Song P. Cefepime- Induced Non-Convulsive Status Epilepticus (NCSE). J Epilepsy Res. 2013 Jun 30;3(1):39-41. doi: 10.14581/jer.13008. eCollection 2013 Jun.
Durand-Maugard C, Lemaire-Hurtel AS, Gras-Champel V, Hary L, Maizel J, Prud'homme-Bernardy A, Andrejak C, Andrejak M. Blood and CSF monitoring of cefepime-induced neurotoxicity: nine case reports. J Antimicrob Chemother. 2012 May;67(5):1297-9. doi: 10.1093/jac/dks012. Epub 2012 Jan 31. No abstract available.
Gangireddy VG, Mitchell LC, Coleman T. Cefepime neurotoxicity despite renal adjusted dosing. Scand J Infect Dis. 2011 Oct;43(10):827-9. doi: 10.3109/00365548.2011.581308. Epub 2011 May 23.
Tanaka A, Takechi K, Watanabe S, Tanaka M, Suemaru K, Araki H. Comparison of the prevalence of convulsions associated with the use of cefepime and meropenem. Int J Clin Pharm. 2013 Oct;35(5):683-7. doi: 10.1007/s11096-013-9799-3. Epub 2013 Jun 4.
Lipman J, Wallis SC, Boots RJ. Cefepime versus cefpirome: the importance of creatinine clearance. Anesth Analg. 2003 Oct;97(4):1149-1154. doi: 10.1213/01.ANE.0000077077.54084.B0.
Tam VH, McKinnon PS, Akins RL, Drusano GL, Rybak MJ. Pharmacokinetics and pharmacodynamics of cefepime in patients with various degrees of renal function. Antimicrob Agents Chemother. 2003 Jun;47(6):1853-61. doi: 10.1128/AAC.47.6.1853-1861.2003.
Roos JF, Bulitta J, Lipman J, Kirkpatrick CM. Pharmacokinetic-pharmacodynamic rationale for cefepime dosing regimens in intensive care units. J Antimicrob Chemother. 2006 Nov;58(5):987-93. doi: 10.1093/jac/dkl349. Epub 2006 Aug 30.
Georges B, Conil JM, Seguin T, Dieye E, Cougot P, Decun JF, Lavit M, Samii K, Houin G, Saivin S. Cefepime in intensive care unit patients: validation of a population pharmacokinetic approach and influence of covariables. Int J Clin Pharmacol Ther. 2008 Apr;46(4):157-64. doi: 10.5414/cpp46157.
Delattre IK, Musuamba FT, Jacqmin P, Taccone FS, Laterre PF, Verbeeck RK, Jacobs F, Wallemacq P. Population pharmacokinetics of four beta-lactams in critically ill septic patients comedicated with amikacin. Clin Biochem. 2012 Jul;45(10-11):780-6. doi: 10.1016/j.clinbiochem.2012.03.030. Epub 2012 Apr 5.
Nicasio AM, Ariano RE, Zelenitsky SA, Kim A, Crandon JL, Kuti JL, Nicolau DP. Population pharmacokinetics of high-dose, prolonged-infusion cefepime in adult critically ill patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2009 Apr;53(4):1476-81. doi: 10.1128/AAC.01141-08. Epub 2009 Feb 2.
Lima-Rogel V, Medina-Rojas EL, Del Carmen Milan-Segovia R, Noyola DE, Nieto-Aguirre K, Lopez-Delarosa A, Romano-Moreno S. Population pharmacokinetics of cefepime in neonates with severe nosocomial infections. J Clin Pharm Ther. 2008 Jun;33(3):295-306. doi: 10.1111/j.1365-2710.2008.00913.x.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
B126201419859
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.