The Effect of Type 1 Diabetes on Pan-Arterial Vascular Function and Insulin Sensitivity in Humans
NCT ID: NCT02490124
Last Updated: 2016-01-13
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
7 participants
OBSERVATIONAL
2014-12-31
2015-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Vascular Inflammation in Adolescents With Type 1 Diabetes
NCT00933101
Changes in the Diameter of Retinal Vessels After Remote Ischemic Conditioning in Patients With Type 1 Diabetes
NCT03906383
Wisconsin Epidemiological Study of Cardiovascular Disease in Type 1 Diabetes
NCT00005539
Vascular Function in Adolescent, Diabetic Children
NCT00348179
Peripheral Insulin Uptake in Type 2 Diabetes Mellitus and in Non-Diabetic Individuals
NCT02031341
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Type 1 Diabetic
Type 1 Diabetic
No interventions assigned to this group
Control
normal healthy control
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* BMI ≤ 25
* Healthy with no chronic illness (control group only)
* Normal screening labs or no clinically significant values
* DM1 subjects will have been on insulin for at least 5 years and HbA1c \<9
Exclusion Criteria
* Smoking presently or in the past 6 months
* Medications that affect the vasculature (except ACE or ARB in DM1 subjects, although they will need to be off these drugs for 2 weeks prior to study).
* Elevated LDL cholesterol \> 160
* BP \<100/60 or \>160/90
* Pulse oximetry \<90%
* Pregnant or breastfeeding
* History of cardiovascular disease, cerebral vascular disease, peripheral vascular disease, liver disease
* Presence of an intracardiac or intrapulmonary shunt (we will screen for this by auscultation during the physical exam ).
* Known hypersensitivity to perflutren (contained in Definity)
* For DM1 group:
* HbA1c ≥ 9
* Microalbuminuria
* Retinipathy
* Ketoacidosis within the past year.
18 Years
40 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Virginia
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Eugene Barrett
Professor Eugene Barrett MD PhD
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Eugene J. B, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
University of Virginia
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Virginia
Charlottesville, Virginia, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Libby P, Nathan DM, Abraham K, Brunzell JD, Fradkin JE, Haffner SM, Hsueh W, Rewers M, Roberts BT, Savage PJ, Skarlatos S, Wassef M, Rabadan-Diehl C; National Heart, Lung, and Blood Institute; National Institute of Diabetes and Digestive and Kidney Diseases Working Group on Cardiovascular Complications of Type 1 Diabetes Mellitus. Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases Working Group on Cardiovascular Complications of Type 1 Diabetes Mellitus. Circulation. 2005 Jun 28;111(25):3489-93. doi: 10.1161/CIRCULATIONAHA.104.529651. No abstract available.
Krolewski AS, Kosinski EJ, Warram JH, Leland OS, Busick EJ, Asmal AC, Rand LI, Christlieb AR, Bradley RF, Kahn CR. Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am J Cardiol. 1987 Apr 1;59(8):750-5. doi: 10.1016/0002-9149(87)91086-1.
Widlansky ME, Gokce N, Keaney JF Jr, Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Cardiol. 2003 Oct 1;42(7):1149-60. doi: 10.1016/s0735-1097(03)00994-x.
Schram MT, Chaturvedi N, Schalkwijk CG, Fuller JH, Stehouwer CD; EURODIAB Prospective Complications Study Group. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes--the EURODIAB Prospective Complications Study. Diabetologia. 2005 Feb;48(2):370-8. doi: 10.1007/s00125-004-1628-8. Epub 2005 Feb 4.
Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993 Dec;88(6):2510-6. doi: 10.1161/01.cir.88.6.2510.
Clarkson P, Celermajer DS, Donald AE, Sampson M, Sorensen KE, Adams M, Yue DK, Betteridge DJ, Deanfield JE. Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels. J Am Coll Cardiol. 1996 Sep;28(3):573-9. doi: 10.1016/0735-1097(96)82380-1.
Lockhart CJ, Agnew CE, McCann A, Hamilton PK, Quinn CE, McCall DO, Plumb RD, McClenaghan VC, McGivern RC, Harbinson MT, McVeigh GE. Impaired flow-mediated dilatation response in uncomplicated Type 1 diabetes mellitus: influence of shear stress and microvascular reactivity. Clin Sci (Lond). 2011 Aug;121(3):129-39. doi: 10.1042/CS20100448.
Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, Laurent S. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002 Jan;39(1):10-5. doi: 10.1161/hy0102.099031.
Anderson TJ, Charbonneau F, Title LM, Buithieu J, Rose MS, Conradson H, Hildebrand K, Fung M, Verma S, Lonn EM. Microvascular function predicts cardiovascular events in primary prevention: long-term results from the Firefighters and Their Endothelium (FATE) study. Circulation. 2011 Jan 18;123(2):163-9. doi: 10.1161/CIRCULATIONAHA.110.953653. Epub 2011 Jan 3.
Schauer IE, Snell-Bergeon JK, Bergman BC, Maahs DM, Kretowski A, Eckel RH, Rewers M. Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: The CACTI study. Diabetes. 2011 Jan;60(1):306-14. doi: 10.2337/db10-0328. Epub 2010 Oct 26.
Liu J, Jahn LA, Fowler DE, Barrett EJ, Cao W, Liu Z. Free fatty acids induce insulin resistance in both cardiac and skeletal muscle microvasculature in humans. J Clin Endocrinol Metab. 2011 Feb;96(2):438-46. doi: 10.1210/jc.2010-1174. Epub 2010 Nov 3.
Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990 Jun;85(6):1844-52. doi: 10.1172/JCI114644.
Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ. Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes. 2006 May;55(5):1436-42. doi: 10.2337/db05-1373.
Verma S, Buchanan MR, Anderson TJ. Endothelial function testing as a biomarker of vascular disease. Circulation. 2003 Oct 28;108(17):2054-9. doi: 10.1161/01.CIR.0000089191.72957.ED. No abstract available.
Barrett EJ, Wang H, Upchurch CT, Liu Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am J Physiol Endocrinol Metab. 2011 Aug;301(2):E252-63. doi: 10.1152/ajpendo.00186.2011. Epub 2011 May 24.
Keske MA, Clerk LH, Price WJ, Jahn LA, Barrett EJ. Obesity blunts microvascular recruitment in human forearm muscle after a mixed meal. Diabetes Care. 2009 Sep;32(9):1672-7. doi: 10.2337/dc09-0206. Epub 2009 Jun 1.
Miyaki A, Maeda S, Yoshizawa M, Misono M, Saito Y, Sasai H, Endo T, Nakata Y, Tanaka K, Ajisaka R. Effect of weight reduction with dietary intervention on arterial distensibility and endothelial function in obese men. Angiology. 2009 Jun-Jul;60(3):351-7. doi: 10.1177/0003319708325449. Epub 2008 Nov 19.
Sugawara J, Otsuki T, Tanabe T, Hayashi K, Maeda S, Matsuda M. Physical activity duration, intensity, and arterial stiffening in postmenopausal women. Am J Hypertens. 2006 Oct;19(10):1032-6. doi: 10.1016/j.amjhyper.2006.03.008.
Baron AD, Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G. Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest. 1995 Aug;96(2):786-92. doi: 10.1172/JCI118124.
Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, Liu Z. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009 May;52(5):752-64. doi: 10.1007/s00125-009-1313-z. Epub 2009 Mar 13.
Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F; Centers for Disease Control and Prevention; American Heart Association. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003 Jan 28;107(3):499-511. doi: 10.1161/01.cir.0000052939.59093.45. No abstract available.
Schalkwijk CG, Poland DC, van Dijk W, Kok A, Emeis JJ, Drager AM, Doni A, van Hinsbergh VW, Stehouwer CD. Plasma concentration of C-reactive protein is increased in type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation. Diabetologia. 1999 Mar;42(3):351-7. doi: 10.1007/s001250051162.
Ladeia AM, Stefanelli E, Ladeia-Frota C, Moreira A, Hiltner A, Adan L. Association between elevated serum C-reactive protein and triglyceride levels in young subjects with type 1 diabetes. Diabetes Care. 2006 Feb;29(2):424-6. doi: 10.2337/diacare.29.02.06.dc05-2033. No abstract available.
Sundell J, Ronnemaa T, Laine H, Raitakari OT, Luotolahti M, Nuutila P, Knuuti J. High-sensitivity C-reactive protein and impaired coronary vasoreactivity in young men with uncomplicated type 1 diabetes. Diabetologia. 2004 Nov;47(11):1888-94. doi: 10.1007/s00125-004-1543-z. Epub 2004 Nov 24.
Hayaishi-Okano R, Yamasaki Y, Katakami N, Ohtoshi K, Gorogawa S, Kuroda A, Matsuhisa M, Kosugi K, Nishikawa N, Kajimoto Y, Hori M. Elevated C-reactive protein associates with early-stage carotid atherosclerosis in young subjects with type 1 diabetes. Diabetes Care. 2002 Aug;25(8):1432-8. doi: 10.2337/diacare.25.8.1432.
Nagaoka T, Kuo L, Ren Y, Yoshida A, Hein TW. C-reactive protein inhibits endothelium-dependent nitric oxide-mediated dilation of retinal arterioles via enhanced superoxide production. Invest Ophthalmol Vis Sci. 2008 May;49(5):2053-60. doi: 10.1167/iovs.07-1387.
Qamirani E, Ren Y, Kuo L, Hein TW. C-reactive protein inhibits endothelium-dependent NO-mediated dilation in coronary arterioles by activating p38 kinase and NAD(P)H oxidase. Arterioscler Thromb Vasc Biol. 2005 May;25(5):995-1001. doi: 10.1161/01.ATV.0000159890.10526.1e. Epub 2005 Feb 17.
Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, Thomason MJ, Mackness MI, Charlton-Menys V, Fuller JH; CARDS investigators. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004 Aug 21-27;364(9435):685-96. doi: 10.1016/S0140-6736(04)16895-5.
Behrendt D, Ganz P. Endothelial function. From vascular biology to clinical applications. Am J Cardiol. 2002 Nov 21;90(10C):40L-48L. doi: 10.1016/s0002-9149(02)02963-6.
Szmitko PE, Wang CH, Weisel RD, de Almeida JR, Anderson TJ, Verma S. New markers of inflammation and endothelial cell activation: Part I. Circulation. 2003 Oct 21;108(16):1917-23. doi: 10.1161/01.CIR.0000089190.95415.9F. No abstract available.
de Graaf JC, Banga JD, Moncada S, Palmer RM, de Groot PG, Sixma JJ. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation. 1992 Jun;85(6):2284-90. doi: 10.1161/01.cir.85.6.2284.
Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C, Luscher TF. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation. 1995 Mar 1;91(5):1314-9. doi: 10.1161/01.cir.91.5.1314.
Esteve E, Castro A, Lopez-Bermejo A, Vendrell J, Ricart W, Fernandez-Real JM. Serum interleukin-6 correlates with endothelial dysfunction in healthy men independently of insulin sensitivity. Diabetes Care. 2007 Apr;30(4):939-45. doi: 10.2337/dc06-1793.
Clausen P, Jacobsen P, Rossing K, Jensen JS, Parving HH, Feldt-Rasmussen B. Plasma concentrations of VCAM-1 and ICAM-1 are elevated in patients with Type 1 diabetes mellitus with microalbuminuria and overt nephropathy. Diabet Med. 2000 Sep;17(9):644-9. doi: 10.1046/j.1464-5491.2000.00347.x.
Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002-12. doi: 10.1056/NEJM199312303292706. No abstract available.
Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994 Sep;94(3):1172-9. doi: 10.1172/JCI117433.
Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996 Jun 1;97(11):2601-10. doi: 10.1172/JCI118709.
Rossi R, Cioni E, Nuzzo A, Origliani G, Modena MG. Endothelial-dependent vasodilation and incidence of type 2 diabetes in a population of healthy postmenopausal women. Diabetes Care. 2005 Mar;28(3):702-7. doi: 10.2337/diacare.28.3.702.
Vincent MA, Barrett EJ, Lindner JR, Clark MG, Rattigan S. Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol Endocrinol Metab. 2003 Jul;285(1):E123-9. doi: 10.1152/ajpendo.00021.2003.
Eggleston EM, Jahn LA, Barrett EJ. Hyperinsulinemia rapidly increases human muscle microvascular perfusion but fails to increase muscle insulin clearance: evidence that a saturable process mediates muscle insulin uptake. Diabetes. 2007 Dec;56(12):2958-63. doi: 10.2337/db07-0670. Epub 2007 Aug 24.
Rattigan S, Clark MG, Barrett EJ. Acute vasoconstriction-induced insulin resistance in rat muscle in vivo. Diabetes. 1999 Mar;48(3):564-9. doi: 10.2337/diabetes.48.3.564.
Clark AD, Barrett EJ, Rattigan S, Wallis MG, Clark MG. Insulin stimulates laser Doppler signal by rat muscle in vivo, consistent with nutritive flow recruitment. Clin Sci (Lond). 2001 Mar;100(3):283-90.
Llaurado G, Simo R, Villaplana M, Berlanga E, Vendrell J, Gonzalez-Clemente JM. Can augmentation index substitute aortic pulse wave velocity in the assessment of central arterial stiffness in type 1 diabetes? Acta Diabetol. 2012 Dec;49 Suppl 1:S253-7. doi: 10.1007/s00592-012-0433-y. Epub 2012 Oct 2.
Coggins M, Lindner J, Rattigan S, Jahn L, Fasy E, Kaul S, Barrett E. Physiologic hyperinsulinemia enhances human skeletal muscle perfusion by capillary recruitment. Diabetes. 2001 Dec;50(12):2682-90. doi: 10.2337/diabetes.50.12.2682.
Vincent MA, Clerk LH, Lindner JR, Price WJ, Jahn LA, Leong-Poi H, Barrett EJ. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metab. 2006 Jun;290(6):E1191-7. doi: 10.1152/ajpendo.00497.2005.
Zhang L, Vincent MA, Richards SM, Clerk LH, Rattigan S, Clark MG, Barrett EJ. Insulin sensitivity of muscle capillary recruitment in vivo. Diabetes. 2004 Feb;53(2):447-53. doi: 10.2337/diabetes.53.2.447.
Vincent MA, Dawson D, Clark AD, Lindner JR, Rattigan S, Clark MG, Barrett EJ. Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes. 2002 Jan;51(1):42-8. doi: 10.2337/diabetes.51.1.42.
Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S, Barrett EJ. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004 Jun;53(6):1418-23. doi: 10.2337/diabetes.53.6.1418.
Inyard AC, Clerk LH, Vincent MA, Barrett EJ. Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake. Diabetes. 2007 Sep;56(9):2194-200. doi: 10.2337/db07-0020. Epub 2007 Jun 11.
Clerk LH, Vincent MA, Barrett EJ, Lankford MF, Lindner JR. Skeletal muscle capillary responses to insulin are abnormal in late-stage diabetes and are restored by angiotensin-converting enzyme inhibition. Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1804-9. doi: 10.1152/ajpendo.00498.2007. Epub 2007 Oct 2.
Scognamiglio R, Negut C, De Kreutzenberg SV, Tiengo A, Avogaro A. Postprandial myocardial perfusion in healthy subjects and in type 2 diabetic patients. Circulation. 2005 Jul 12;112(2):179-84. doi: 10.1161/CIRCULATIONAHA.104.495127. Epub 2005 Jul 5.
Chai W, Liu J, Jahn LA, Fowler DE, Barrett EJ, Liu Z. Salsalate attenuates free fatty acid-induced microvascular and metabolic insulin resistance in humans. Diabetes Care. 2011 Jul;34(7):1634-8. doi: 10.2337/dc10-2345. Epub 2011 May 26.
Chan A, Barrett EJ, Anderson SM, Kovatchev BP, Breton MD. Muscle microvascular recruitment predicts insulin sensitivity in middle-aged patients with type 1 diabetes mellitus. Diabetologia. 2012 Mar;55(3):729-36. doi: 10.1007/s00125-011-2402-3. Epub 2011 Dec 14.
Westerbacka J, Uosukainen A, Makimattila S, Schlenzka A, Yki-Jarvinen H. Insulin-induced decrease in large artery stiffness is impaired in uncomplicated type 1 diabetes mellitus. Hypertension. 2000 May;35(5):1043-8. doi: 10.1161/01.hyp.35.5.1043.
Llaurado G, Ceperuelo-Mallafre V, Vilardell C, Simo R, Freixenet N, Vendrell J, Gonzalez-Clemente JM. Arterial stiffness is increased in patients with type 1 diabetes without cardiovascular disease: a potential role of low-grade inflammation. Diabetes Care. 2012 May;35(5):1083-9. doi: 10.2337/dc11-1475. Epub 2012 Feb 22.
Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R; International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002 Jan 16;39(2):257-65. doi: 10.1016/s0735-1097(01)01746-6.
Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM, Target R, Levy BI. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension. 1995 Sep;26(3):485-90. doi: 10.1161/01.hyp.26.3.485.
Baron AD. Hemodynamic actions of insulin. Am J Physiol. 1994 Aug;267(2 Pt 1):E187-202. doi: 10.1152/ajpendo.1994.267.2.E187.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
17099
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.