Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
150 participants
OBSERVATIONAL
2024-03-25
2027-09-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Determinants of Cardiovascular Disease Risk Factors Among Youth With Type 1 Diabetes
NCT04304729
Early Detection of Long-term Diabetic Complications in Children and Adolescents With Type 1 Diabetes
NCT05159856
Children With Diabetes at Risk for Heart Disease.
NCT02275091
Cardiac Dysfunction in Adolescents With Type 1 Diabetes: Contribution of Daily-life Glucoregulation and Impact on Cardiorespiratory Exercise Capacity
NCT04052919
Vascular Inflammation in Adolescents With Type 1 Diabetes
NCT00933101
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Cardiovascular disease is a major complication of T1D traditionally considered a longterm complication that manifests in adulthood. However, several studies have reported evidence of cardiovascular disease in children who have had T1D for more than 1 year but it is unclear how and when the cardiovascular damage begins. There is also minimal data on cardiovascular complications in children with type 1 diabetes living in Canada.
The goal of this project is to determine the timing and factors leading to vascular damage in children from T1D diagnosis.
We will follow children (aged 8-18 years) from T1D diagnosis over the first 2 years. The primary objective of the study is to assess changes in arterial stiffness (pulse wave velocity; augmentation index), 24-h ambulatory blood pressure (24h-ABPM), and blood biomarkers of vascular damage during the first 2 years of T1D diagnosis.
The secondary objectives of the study are to assess changes in body composition, surrogate markers of adiposity (BMI, waist circumference), and dietary intakes during the first 2 years of T1D diagnosis; and to determine the relationships to measures of arterial stiffness, blood pressure, and blood biomarkers of vascular damage. We will also collect sociodemographic data, estimates of physical activity, and glycated hemoglobin (A1C) as an indicator of glycemic control.
Children with a T1D diagnosis aged 8-18 years will be recruited through the Endocrine and Diabetes Unit at BC Children's Hospital (BCCH). Vascular assessments, blood samples, and data will be collected at diagnosis (within 14 weeks of T1D diagnosis; baseline) and at 6, 12, 18, and 24 months post-diagnosis; there will be a total of 5 visits. Each subject will undergo a clinical assessment, interview/questionnaires, blood collection, and cardiovascular assessment.
Statistical Analysis: . Linear regression models will be used to assess changes in 24-h ABPM mean, daytime and nighttime blood pressure, pulse wave velocity, augmentation index, and biomarkers of vascular damage at diagnosis with values collected during the first 24 months post diagnoses. Models will be adjusted for appropriate covariates. To fully understand the biological differences between males and females, data from boys and girls will be analyzed separately.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Children with Type 1 diabetes
children recruited within 14 weeks of type 1 diabetes diagnosis and followed for 24 months.
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Within 14 weeks of type 1 diabetes diagnosis
3. Ability and willingness to undergo non-invasive arterial stiffness assessment for 1hr and willingness to wear the 24-h automated blood pressure monitoring (ABPM) device.
Exclusion Criteria
1. Other cardiometabolic or endocrine diseases diagnosis (type 2 diabetes; familial disorders of cholesterol metabolism; lupus)
2. Other genetic syndromes (Down Syndrome; Prader-Willi)
3. Eating disorder diagnosis
4. Transgender children taking hormone blockers or exogenous sex steroids
5. Currently treated with medications known to affect metabolism (e.g. glucocorticoids, antipsychotics).
8 Years
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Canadian Institutes of Health Research (CIHR)
OTHER_GOV
BC Children's Hospital Research Institute
OTHER
University of British Columbia
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Angela Devlin
Professor of Pediatrics
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Angela Devlin, PhD
Role: PRINCIPAL_INVESTIGATOR
UBC Pediatrics/BC Children's Hospital Research Institute
Constadina Panagiotopoulos, MD
Role: PRINCIPAL_INVESTIGATOR
UBC Pediatrics/BC Children's Hospital Research Institute
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Endocrine and Diabetes Unit, BC Children's Hospital
Vancouver, British Columbia, Canada
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, Colhoun HM. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: a cohort study using the general practice research database. Diabetes Care. 2006 Apr;29(4):798-804. doi: 10.2337/diacare.29.04.06.dc05-1433.
Deckert T, Poulsen JE, Larsen M. Prognosis of diabetics with diabetes onset before the age of thirty-one. I. Survival, causes of death, and complications. Diabetologia. 1978 Jun;14(6):363-70. doi: 10.1007/BF01228130. No abstract available.
Secrest AM, Becker DJ, Kelsey SF, Laporte RE, Orchard TJ. Cause-specific mortality trends in a large population-based cohort with long-standing childhood-onset type 1 diabetes. Diabetes. 2010 Dec;59(12):3216-22. doi: 10.2337/db10-0862. Epub 2010 Aug 25.
Krolewski AS, Kosinski EJ, Warram JH, Leland OS, Busick EJ, Asmal AC, Rand LI, Christlieb AR, Bradley RF, Kahn CR. Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am J Cardiol. 1987 Apr 1;59(8):750-5. doi: 10.1016/0002-9149(87)91086-1.
Libby P, Nathan DM, Abraham K, Brunzell JD, Fradkin JE, Haffner SM, Hsueh W, Rewers M, Roberts BT, Savage PJ, Skarlatos S, Wassef M, Rabadan-Diehl C; National Heart, Lung, and Blood Institute; National Institute of Diabetes and Digestive and Kidney Diseases Working Group on Cardiovascular Complications of Type 1 Diabetes Mellitus. Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases Working Group on Cardiovascular Complications of Type 1 Diabetes Mellitus. Circulation. 2005 Jun 28;111(25):3489-93. doi: 10.1161/CIRCULATIONAHA.104.529651. No abstract available.
Glackin S, Islam N, Henderson AM, Dionne JM, Harris KC, Panagiotopoulos C, Devlin AM. Ambulatory blood pressure and carotid intima media thickness in children with type 1 diabetes. Pediatr Diabetes. 2020 Mar;21(2):358-365. doi: 10.1111/pedi.12960. Epub 2019 Dec 26.
Flynn JT, Daniels SR, Hayman LL, Maahs DM, McCrindle BW, Mitsnefes M, Zachariah JP, Urbina EM; American Heart Association Atherosclerosis, Hypertension and Obesity in Youth Committee of the Council on Cardiovascular Disease in the Young. Update: ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association. Hypertension. 2014 May;63(5):1116-35. doi: 10.1161/HYP.0000000000000007. Epub 2014 Mar 3. No abstract available.
Wiltshire EJ, Gent R, Hirte C, Pena A, Thomas DW, Couper JJ. Endothelial dysfunction relates to folate status in children and adolescents with type 1 diabetes. Diabetes. 2002 Jul;51(7):2282-6. doi: 10.2337/diabetes.51.7.2282.
Jarvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A, Rontu R, Laine S, Lehtimaki T, Ronnemaa T, Viikari J, Raitakari OT. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation. 2004 Apr 13;109(14):1750-5. doi: 10.1161/01.CIR.0000124725.46165.2C. Epub 2004 Mar 15.
Jarvisalo MJ, Putto-Laurila A, Jartti L, Lehtimaki T, Solakivi T, Ronnemaa T, Raitakari OT. Carotid artery intima-media thickness in children with type 1 diabetes. Diabetes. 2002 Feb;51(2):493-8. doi: 10.2337/diabetes.51.2.493.
Singh TP, Groehn H, Kazmers A. Vascular function and carotid intimal-medial thickness in children with insulin-dependent diabetes mellitus. J Am Coll Cardiol. 2003 Feb 19;41(4):661-5. doi: 10.1016/s0735-1097(02)02894-2.
Krantz JS, Mack WJ, Hodis HN, Liu CR, Liu CH, Kaufman FR. Early onset of subclinical atherosclerosis in young persons with type 1 diabetes. J Pediatr. 2004 Oct;145(4):452-7. doi: 10.1016/j.jpeds.2004.06.042.
Heilman K, Zilmer M, Zilmer K, Lintrop M, Kampus P, Kals J, Tillmann V. Arterial stiffness, carotid artery intima-media thickness and plasma myeloperoxidase level in children with type 1 diabetes. Diabetes Res Clin Pract. 2009 May;84(2):168-73. doi: 10.1016/j.diabres.2009.01.014. Epub 2009 Feb 23.
Ciftel M, Ertug H, Parlak M, Akcurin G, Kardelen F. Investigation of endothelial dysfunction and arterial stiffness in children with type 1 diabetes mellitus and the association with diastolic dysfunction. Diab Vasc Dis Res. 2014 Jan;11(1):19-25. doi: 10.1177/1479164113508564. Epub 2013 Oct 29.
Babar GS, Zidan H, Widlansky ME, Das E, Hoffmann RG, Daoud M, Alemzadeh R. Impaired endothelial function in preadolescent children with type 1 diabetes. Diabetes Care. 2011 Mar;34(3):681-5. doi: 10.2337/dc10-2134. Epub 2011 Feb 2.
Glowinska-Olszewska B, Moniuszko M, Hryniewicz A, Jeznach M, Rusak M, Dabrowska M, Luczynski W, Bodzenta-Lukaszyk A, Bossowski A. Relationship between circulating endothelial progenitor cells and endothelial dysfunction in children with type 1 diabetes: a novel paradigm of early atherosclerosis in high-risk young patients. Eur J Endocrinol. 2013 Jan 17;168(2):153-61. doi: 10.1530/EJE-12-0857. Print 2013 Feb.
Bradley TJ, Slorach C, Mahmud FH, Dunger DB, Deanfield J, Deda L, Elia Y, Har RL, Hui W, Moineddin R, Reich HN, Scholey JW, Mertens L, Sochett E, Cherney DZ. Early changes in cardiovascular structure and function in adolescents with type 1 diabetes. Cardiovasc Diabetol. 2016 Feb 16;15:31. doi: 10.1186/s12933-016-0351-3.
Galler A, Heitmann A, Siekmeyer W, Gelbrich G, Kapellen T, Kratzsch J, Kiess W. Increased arterial stiffness in children and adolescents with type 1 diabetes: no association between arterial stiffness and serum levels of adiponectin. Pediatr Diabetes. 2010 Feb;11(1):38-46. doi: 10.1111/j.1399-5448.2009.00525.x. Epub 2009 May 28.
Duarte SV, de Souza Rajao J, Pinho JF, Dos Santos LM, Alves-Neves CM, Magalhaes GS, Ribeiro-Oliveira A Jr, Rodrigues-Machado MDG. Changes in aortic pulse wave components, pulse pressure amplification, and hemodynamic parameters of children and adolescents with type 1 diabetes. Pediatr Diabetes. 2019 Mar;20(2):202-209. doi: 10.1111/pedi.12782. Epub 2018 Dec 27.
Peppa-Patrikiou M, Scordili M, Antoniou A, Giannaki M, Dracopoulou M, Dacou-Voutetakis C. Carotid atherosclerosis in adolescents and young adults with IDDM. Relation to urinary endothelin, albumin, free cortisol, and other factors. Diabetes Care. 1998 Jun;21(6):1004-7. doi: 10.2337/diacare.21.6.1004.
Rabago Rodriguez R, Gomez-Diaz RA, Tanus Haj J, Avelar Garnica FJ, Ramirez Soriano E, Nishimura Meguro E, Aguilar-Salinas CA, Wacher NH. Carotid intima-media thickness in pediatric type 1 diabetic patients. Diabetes Care. 2007 Oct;30(10):2599-602. doi: 10.2337/dc07-0922. Epub 2007 Jul 20.
Putarek K, Banfic L, Pasalic M, Krnic N, Spehar Uroic A, Rojnic Putarek N. Arterial stiffness as a measure of cardiovascular risk in obese adolescents and adolescents with diabetes type 1. J Pediatr Endocrinol Metab. 2018 Dec 19;31(12):1315-1323. doi: 10.1515/jpem-2018-0137.
Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969 Jun;44(235):291-303. doi: 10.1136/adc.44.235.291. No abstract available.
Flynn JT, Urbina EM, Brady TM, Baker-Smith C, Daniels SR, Hayman LL, Mitsnefes M, Tran A, Zachariah JP; Atherosclerosis, Hypertension, and Obesity in the Young Committee of the American Heart Association Council on Lifelong Congenital Heart Disease and Heart Health in the Young; Council on Cardiovascular Radiology and Intervention; Council on Epidemiology and Prevention; Council on Hypertension; and Council on Lifestyle and Cardiometabolic Health. Ambulatory Blood Pressure Monitoring in Children and Adolescents: 2022 Update: A Scientific Statement From the American Heart Association. Hypertension. 2022 Jul;79(7):e114-e124. doi: 10.1161/HYP.0000000000000215. Epub 2022 May 23.
de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007 Sep;85(9):660-7. doi: 10.2471/blt.07.043497.
Sharma AK, Metzger DL, Daymont C, Hadjiyannakis S, Rodd CJ. LMS tables for waist-circumference and waist-height ratio Z-scores in children aged 5-19 y in NHANES III: association with cardio-metabolic risks. Pediatr Res. 2015 Dec;78(6):723-9. doi: 10.1038/pr.2015.160. Epub 2015 Sep 2.
Crocker PR, Bailey DA, Faulkner RA, Kowalski KC, McGrath R. Measuring general levels of physical activity: preliminary evidence for the Physical Activity Questionnaire for Older Children. Med Sci Sports Exerc. 1997 Oct;29(10):1344-9. doi: 10.1097/00005768-199710000-00011.
Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Flinn SK, Gidding SS, Goodwin C, Leu MG, Powers ME, Rea C, Samuels J, Simasek M, Thaker VV, Urbina EM; SUBCOMMITTEE ON SCREENING AND MANAGEMENT OF HIGH BLOOD PRESSURE IN CHILDREN. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics. 2017 Sep;140(3):e20171904. doi: 10.1542/peds.2017-1904. Epub 2017 Aug 21.
de Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, Mietus-Snyder M, Mitsnefes MM, Peterson AL, St-Pierre J, Urbina EM, Zachariah JP, Zaidi AN. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement From the American Heart Association. Circulation. 2019 Mar 26;139(13):e603-e634. doi: 10.1161/CIR.0000000000000618.
de Ferranti SD, de Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, Magge SN, Marx N, McGuire DK, Orchard TJ, Zinman B, Eckel RH. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Circulation. 2014 Sep 23;130(13):1110-30. doi: 10.1161/CIR.0000000000000034. Epub 2014 Aug 11. No abstract available.
Shah AS, Isom S, D'Agostino R, Dolan LM, Dabelea D, Imperatore G, Mottl A, Lustigova E, Pihoker C, Marcovina S, Urbina EM. Longitudinal Changes in Arterial Stiffness and Heart Rate Variability in Youth-Onset Type 1 Versus Type 2 Diabetes: The SEARCH for Diabetes in Youth Study. Diabetes Care. 2022 Jul 7;45(7):1647-1656. doi: 10.2337/dc21-2426.
Wiedeman AM, Panagiotopoulos C, Devlin AM. Understanding vascular complications in children from type 1 diabetes diagnosis: protocol for a prospective cohort study in Vancouver, Canada. BMJ Open. 2025 Sep 11;15(9):e093842. doi: 10.1136/bmjopen-2024-093842.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
H21-03109
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.