Electrical Stimulation of the Paretic Upper Limb in the Early Stroke Phase
NCT ID: NCT02250365
Last Updated: 2017-08-18
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
102 participants
INTERVENTIONAL
2014-10-13
2017-08-10
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Hand Rehabilitation Study for Stroke Patients
NCT03148106
Electrical Stimulation to Improve Hand Function in Patients With Chronic Stroke
NCT00023569
Transcranial Direct Current Stimulation and Functional Electrical Stimulation for Upper-limb Rehabilitation After Stroke
NCT02818608
Transcranial Direct Current Stimulation and Robotic Therapy in Upper Limb Motor Recovery After Stroke
NCT02496026
Contralaterally Controlled FES of Arm & Hand for Subacute Stroke Rehabilitation
NCT01688856
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Globally, stroke is ranked as the second leading cause of death and the third largest cause of disease burden. Stroke is associated with tremendous physical, psychological and economical demands on patients, families, the health care system and society at large. The worldwide burden of stroke is expected to increase in the coming years. In the developed countries, this trend is primarily a consequence of the growing older population; age being a major risk factor for stroke. Upper limb paresis is one of the most frequent and persisting impairments following stroke, and represents a major obstacle to regain independence in activities of daily living (ADL). In fact, it has been estimated that about 50% of the stroke survivors will be left with a non-functional arm after completed stroke rehabilitation. In order to minimize the disease burden in stroke survivors, it is of great importance to design and implement effective rehabilitation strategies targeting the paretic upper limb.
Studies have shown that recovery of upper limb functioning (i.e. recovery of impairments and activity limitations, including skills) follows a pattern with a pronounced early post-stroke recovery and a subsequent leveling off already by 6 months post-stroke. In fact, it has been shown that 80% of patients reached a plateau within 3 weeks, and 95% reached a plateau by 9 weeks. It has also been shown that regaining hand dexterity is largely defined within the first 4 weeks after stroke , indicating a critical time window for recovery of upper limb functioning. Therefore rehabilitation efforts in the early post-stroke phase are likely decisive to maximize functional recovery. However, despite the fact that recovery is most likely in the immediate weeks after stroke, there are very few studies investigating the effect of therapeutic interventions in this time period.
Several therapeutic interventions are currently used to try to aid in the recovery of upper limb functioning. There is limited evidence that hands-on therapy, including passive joint mobilization, manual stretching of soft tissue and passive exercises, is effective. Strength training in chronic stroke may reduce motor impairments in patients with mild-moderate paresis, but without any effect on ADL-performance. Likewise, there is limited evidence for the use of mirror therapy, sensorimotor and mental training. The evidence for using orthoses and other supporting devices is inconclusive. Repetitive task-oriented practice, which is probably the widest used intervention in facilitating upper limb recovery after stroke, has demonstrated promising results mostly in chronic stroke when delivered using virtual reality systems and robots, as well as constrained-induced movement therapy. However, these approaches are patient and resource demanding in terms of hours of daily training or expensive technologies. Moreover, it remains unknown if the functional benefits persist at long-term.
Electrical stimulation (ES) is another method that has been used in facilitating the recovery of upper limb functioning following stroke. ES can induce a muscle contraction, or it can be a somatosensory stimulation below the motor threshold. Regardless the type of stimulation, there is some evidence that ES can aid in reducing motor impairments, but the questions regarding the optimal stimulation protocol (e.g. current amplitude, pulse frequency, placement of electrodes, treatment duration), long-term effect and transfer of training effect into ADL remains unanswered. Since this body of evidence is primarily based upon studies conducted on ES in chronic stroke patients, it also remains unknown to what extent ES applied in the acute phase after stroke could affect the recovery of upper limb functioning. Although the vast majority of the studies have focused on ES that induces muscle contraction, it is widely accepted that somatosensory input is required for maintaining normal motor function. Research shows that motor skills acquisition and motor performance are dependent on somatosensory input, and stroke patients with intact somatosensory function experience more satisfactory response to rehabilitation. In healthy persons, the application of electrical somatosensory stimulation (ESS) to peripheral hand nerves, forearm muscles or the whole hand elicits an increase in the cortical excitability of the representations that control the stimulated body parts, and the increased cortical excitability seems to outlast the stimulation period itself. It has been hypothesized that increasing the amount of somatosensory input may enhance the motor recovery of patients following stroke. Recent studies in acute, subacute and mostly chronic stroke patients suggest that a single 2 hours-session of ESS to the peripheral hand nerves leads to transient improvement of pinch force, movement kinematics and upper limb motor skills required for ADL-performance. The higher the current amplitude, the more prominent the effect seems to be. ESS is used in conjunction with motor training in only one of these studies. One study demonstrates that the effect of a single session of ESS is maintained 30 days after cessation of intervention. Interestingly, there is emerging evidence that multiple sessions of ESS to the peripheral hand nerves in conjunction with motor training might improve motor skills of the paretic upper limb in subacute and chronic stroke patients, and these positive results seems to outlast the intervention period. When ESS is delivered in multiple sessions, it is unclear which current amplitude is optimal in subacute stroke patients. ESS of the whole hand using glove electrodes may or may not benefit the motor recovery of the paretic upper limb in chronic stroke patients. Importantly, ESS is passive in nature, causes patients minimal discomfort, has no adverse effects, is relatively cheap and can easily be incorporated in regular practice. Therefore it is valuable to establish the effect of multiple sessions of ESS in the restoration of upper limb functioning in the acute phase of stroke.
2. Purpose of the project
The overall aim for the present study is to investigate the effect of multiple sessions of suprasensory ESS in conjunction with occupational therapy (OT)/physiotherapy (PT) training on recovery of upper limb functioning in acute stroke patients. Suprasensory ESS is defined as the highest current amplitude that elicits paresthesia in the absence of discomfort, pain and visible muscle twitches. Specifically, we wish to address the following:
1. Does continuous, suprasensory ESS in conjunction with OT/PT training:
a) reduce impairments, b) improve motor skills required to ADL-performance, and c) reduce disability,
2. Are changes that can be observed at the end of the intervention still present by 6 months post-stroke? (long-term effect)
3\. Hypotheses
We expect that continuous, suprasensory ESS is more effective than intermittent, suprasensory ESS. The total time of electrical stimulation during a single, intermittent ESS session will be 1 minute corresponding to 1/60 of the electrical stimulation time during a single, continuous ESS session. Furthermore, we expect brain reorganisation to proceed and covariate with recovery.
4\. Methods
4.1. Study participants
The trial subjects will be recruited from patients admitted to the stroke unit of Bispebjerg Hospital, Copenhagen, Denmark. The stroke unit consists of an acute unit and a rehabilitation unit, and serves a well-defined urban catchment area with a population of approximately 400,000 citizens.
4.2. Procedure, including recruitment of study participants
All patients consecutively admitted to the rehabilitation stroke unit will be screened for inclusion and exclusion criteria immediately after admission. Emma Ghaziani, daily project leader, or other health care personnel involved in the study (e.g. the persons delivering ESS) will take personal contact to each eligible patient as soon as the patient's medical condition allows it. The patient is first asked if he/she is interested in receiving information on the study. If so, the written information is handed out, the information interview is scheduled, and the patient is informed about the possibility of having a companion (e.g. a relative, a friend) present at the information interview. If necessary, the patient may get assistance in contacting the companion in this regard. The information interview will be performed by Emma Ghaziani or other health care personnel involved in the study and will take place at the patient's bedside. The patient's bed will be screened off from the rest of the ward and no other visitors will be present. The declaration of consent will be collected after the patient has been given a reflection time which is determined with regard to inclusion criteria d) (i.e. ESS can be initiated within 7 days post-stroke). Baseline assessment will be performed during the first week post-stroke.
Using a stratified random sampling procedure, the study participants will first be divided into homogenous subgroups with respect to: a) the ability to perform active finger extension and b) gender. Active finger extension has shown to be a simple and reliable early predictor of recovery of upper limb functioning in stroke patients. The patients in each subgroup will then be randomly assigned to either the continuous or the intermittent group. The therapists providing OT/PT training and the therapists performing assessments will be blinded to group allocation. The study participants will be blinded to our hypothesis on which type of suprasensory ESS is most effective.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Continuous, suprasensory ESS
Continuous, suprasensory ESS
1 hour of ESS daily from Monday to Sunday during hospitalization, but no longer than 4th week post-stroke. The ESS will be applied immediately prior to OT/PT training which will include 15 minutes of repetitive, task-oriented upper limb training during the first 30 minutes after cessation of ESS.
Intermittent, suprasensory ESS
Intermittent, suprasensory ESS
1 hour of ESS daily from Monday to Sunday during hospitalization, but no longer than 4th week post-stroke. The ESS will be applied immediately prior to OT/PT training which will include 15 minutes of repetitive, task-oriented upper limb training during the first 30 minutes after cessation of ESS.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Continuous, suprasensory ESS
1 hour of ESS daily from Monday to Sunday during hospitalization, but no longer than 4th week post-stroke. The ESS will be applied immediately prior to OT/PT training which will include 15 minutes of repetitive, task-oriented upper limb training during the first 30 minutes after cessation of ESS.
Intermittent, suprasensory ESS
1 hour of ESS daily from Monday to Sunday during hospitalization, but no longer than 4th week post-stroke. The ESS will be applied immediately prior to OT/PT training which will include 15 minutes of repetitive, task-oriented upper limb training during the first 30 minutes after cessation of ESS.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. diagnosis of acute stroke (ICD 10 code: 163.9, 161.9),
3. residence in the hospitals' catchment area,
4. age \> 18 years,
5. modified Rankin Scale score \< 5,
6. ESS can be initiated within 7 days post-stroke,
7. a subscore \< 66 on section A-D of Fugl-Meyer Assessment Upper Extremity,
Exclusion Criteria
2. have participated in other biomedical, intervention studies within the last 3 months,
3. contraindication to ESS (e.g. pacemaker, significant skin impairment on the paretic arm),
4. incomplete recovery of the affected upper limb after previous stroke,
5. patients who - because of placement in an institution, incarceration pursuant to the Psychiatric Act or due to circumstances of employment - are particularly exposed to pressure regarding participation in the project.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Bispebjerg Hospital
OTHER
Region Capital Denmark
OTHER
Lundbeck Foundation
OTHER
Bevica Fonden
OTHER
Manager Jacob Madsen and his wife, Olga Madsen's Foundation
UNKNOWN
Danish Association of Occupational Therapist
OTHER
University of Copenhagen
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Emma Ghaziani
PhD student
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Peter Magnusson, D.Sc
Role: STUDY_DIRECTOR
Musculoskeletal Rehabilitation Research Unit and Institute of Sports Medicine, Bispebjerg Hospital & University of Copenhagen
Emma Ghaziani, PhD stud
Role: PRINCIPAL_INVESTIGATOR
Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital & University of Copenhagen
Christian Couppé, PhD
Role: PRINCIPAL_INVESTIGATOR
Musculoskeletal Rehabilitation Research Unit and Institute of Sports Medicine, Bispebjerg Hospital & University of Copenhagen
Hanne Christensen, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
Bispebjerg Hospital & University of Copenhagen
Volkert Siersma, statistician
Role: PRINCIPAL_INVESTIGATOR
Research Unit Of General Practice, Copenhagen
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Bispebjerg Hospital
Copenhagen, Region Sjælland, Denmark
Neurological Rehabilitation Centre Copenhagen & other rehabilitation and health care institutions
Copenhagen, Region Sjælland, Denmark
Lioba & Rehabilitation Centre Valby & Heath Centre Stockflethsvej & other rehabilitation and health care institutions
Frederiksberg, Region Sjælland, Denmark
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Ghaziani E, Couppe C, Siersma V, Christensen H, Magnusson SP, Sunnerhagen KS, Persson HC, Alt Murphy M. Easily Conducted Tests During the First Week Post-stroke Can Aid the Prediction of Arm Functioning at 6 Months. Front Neurol. 2020 Jan 9;10:1371. doi: 10.3389/fneur.2019.01371. eCollection 2019.
Ghaziani E, Couppe C, Siersma V, Sondergaard M, Christensen H, Magnusson SP. Electrical Somatosensory Stimulation in Early Rehabilitation of Arm Paresis After Stroke: A Randomized Controlled Trial. Neurorehabil Neural Repair. 2018 Oct;32(10):899-912. doi: 10.1177/1545968318799496. Epub 2018 Sep 25.
Ghaziani E, Couppe C, Henkel C, Siersma V, Sondergaard M, Christensen H, Magnusson SP. Electrical somatosensory stimulation followed by motor training of the paretic upper limb in acute stroke: study protocol for a randomized controlled trial. Trials. 2017 Feb 23;18(1):84. doi: 10.1186/s13063-017-1815-9.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
H-4-2014-012
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.