SC-PEG Asparaginase vs. Oncaspar in Pediatric Acute Lymphoblastic Leukemia (ALL) and Lymphoblastic Lymphoma
NCT ID: NCT01574274
Last Updated: 2025-07-14
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
PHASE2
240 participants
INTERVENTIONAL
2012-06-30
2027-07-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The study will also help to determine whether changing treatment for children and adolescents with ALL with high levels of minimal residual disease may improve cure rates. Measuring minimal disease (MRD) is a laboratory test that finds low levels of leukemia cells that the investigators cannot see under the microscope. In the past, it has been shown that children and adolescents with ALL with high levels of MRD after one month of treatment are less likely to be cured than those with low levels of MRD. Therefore, on the study, the bone marrow and blood at the end of the first month of treatment will be measured in participants with leukemia, and changes in therapy will be implemented based on this measurement. It is not known for sure that changing treatment will improve cure rates. MRD levels can only be measured if the marrow is filled with cancer cells at the time of diagnosis. Therefore, MRD studies will only be done in children and adolescents with ALL and not in those with lymphoblastic lymphoma.
Another part of the study is to determine whether giving antibiotics during the first month of treatment even to participants without fever will prevent serious infections in the blood and other parts of the body. About 25% of children and adolescents with ALL and lymphoblastic lymphoma who receive standard treatment develop a serious blood infection from a bacteria during the first month of treatment. Typically, antibiotics (medicines that fight bacteria) are given by vein only after a child with leukemia or lymphoma develops a fever or have other signs of infection. In this study, antibiotics will be given by mouth or in the vein to all participants during the first month of treatment, whether or not they develop fever.
Another goal of the study to learn how vitamin D levels relate to bone problems (such as broken bones or fractures) that children and adolescents with ALL and lymphoblastic lymphoma experience while on treatment. Some of the chemotherapy drugs used to treat ALL and lymphoblastic lymphoma can make bones weaker, which make fractures more likely. Vitamin D is a natural substance from food and sunlight that can help keep bones strong. The investigators will study how often participants have low levels of vitamin D while receiving chemotherapy, and, for those with low levels, whether giving vitamin D supplements will increase those levels.
Another focus of the study is to learn more about the biology of ALL and lymphoblastic lymphoma by doing research on blood, bone and spinal fluid bone marrow samples. The goal of this research is to improve treatment for children with leukemia in the future.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Pegaspargase and Combination Chemotherapy in Treating Younger Patients With Newly Diagnosed High-Risk Acute Lymphoblastic Leukemia (Closed to Accrual 4-22-2011)
NCT00866307
Treatment of Newly Diagnosed Acute Lymphoblastic Leukemia in Children and Adolescents
NCT03020030
Combination Chemotherapy in Treating Children With Newly Diagnosed Acute Lymphoblastic Leukemia
NCT00002744
Treatment of Acute Lymphoblastic Leukemia in Children
NCT00165178
Erwinia Asparaginase After Allergy to PEG-Asparaginase in Treating Young Patients With Acute Lymphoblastic Leukemia
NCT00537030
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Participants who enroll in this study will receive with anti-leukemia drugs called chemotherapy. During study treatment, the study doctors will continue to perform tests on blood, bone marrow and spinal fluid to assess how the disease is responding to the study treatment and to look for possible side effects. Scans (for example, x-ray, CT scan or MRI scan) may also be done after beginning study treatment to look for possible side effects. If the disease was initially diagnosed by a scan, it will also be repeated during the study treatment to assess how it is responding.
There are three different treatment groups in which leukemia and lymphoblastic lymphoma can be divided and they differ slightly in the types and amounts of chemotherapy drugs used during the 2-years of therapy. Participants are assigned to the different categories based on the features of their leukemia or lymphoma, such as their age, white blood cell count, and results of other tests. The three different treatment groups are called "Standard Risk", "High Risk" and "Very High Risk".
Participants will be given several different chemotherapy drugs during many periods of treatment (called "phases"). These drugs are known to kill lymphoblastic cancer cells. Some of the drugs are given by mouth, some into the veins (intravenously), and others as an injection (a shot) into the muscle. Some chemotherapy drugs will be given directly into your spinal fluid (called intrathecal chemotherapy) during a lumbar puncture (spinal tap). This treatment helps prevent the cancer cells from coming back in the spinal fluid and brain.
The first phase of treatment is steroid prophase. This phase of treatment is typically given in the hospital. This phase of treatment will begin immediately.
after enrolling on the study.
The second phase of treatment is remission induction. This phase will begin immediately after the steroid prophase and will last four weeks. Participants typically remain in the hospital for most (sometimes all) of this phase.
At the end of the remission induction phase, participants will undergo tests to determine if they are in remission. This testing will involve getting samples of blood, bone marrow and spinal fluid to look for cancer cells under the microscope. This testing will also involve getting repeat scans if these were not normal at the time of diagnosis. Remission means that cancer cells cannot be detected under the microscope in the blood, marrow and spinal fluid, and that any cancer previously seen on a scan has significantly improved or is no longer seen. Participants must be in remission to go onto the next phases of treatment; alternative treatments will be discussed with participants who are not in remission at the end of the induction phase.
The Consolidation I phase begins once it is determined that a participant is in remission. This phase lasts about three weeks. This phase of treatment is given in the hospital, but participants may be able to leave the hospital after the first week of the phase. The purpose of this phase is to further reduce the number of cancer cells in the body.
The next phase is the Central Nervous System (CNS) phase, and is usually given in the outpatient setting. Participants may need to be admitted to the hospital during this phase of treatment if a complication develops, such as infection. This phase of therapy begins immediately after the Consolidation I phase and lasts about 3 weeks. Treatment involves a series of lumbar punctures with anti-leukemia drugs given intrathecally over a two week period. Anti-leukemia drugs will also be given by mouth and by vein during this phase as well. Some participants may receive radiation therapy during this phase, although most do not. The decision to treat with radiation or not is based on characteristics of the cancer at diagnosis and whether or not cancer cells were seen in spinal fluid at that time. Radiation therapy is a painless procedure, the purpose of which is to prevent leukemia from coming back in the brain. For participants who receive radiation therapy, it will be given in either 8 or 10 daily treatments, depending on how many leukemia cells were seen in the spinal fluid under the microscope at diagnosis.
The next phase of the study is Consolidation II. This phase begins about 3 weeks after starting the CNS phase and lasts for about 27 weeks. During this phase, chemotherapy is given in three-week cycles, with some drugs given in clinic and some drugs given by mouth at home. Participants are typically treated as outpatients during this phase.
The last phase is called Continuation. This is also usually given as an outpatient. The goal of this phase is to rid the body of all remaining cancer cells. The cycles of chemotherapy during this phase are repeated every 3 weeks, with some drugs given in clinic and some drugs given by mouth at home. This phase will ends two years after remission was documented.
The randomization in this study involves the two forms of asparaginase, Oncaspar and SC-PEG asparaginase. Because no one knows which of the study options is best, participants will be "randomized" into one of the study groups: to receive Oncaspar or to receive SC-PEG. Randomization means that participants are put into a group by chance. Participants who are placed in the Oncaspar group will receive a single dose of Oncaspar on Day 7 of the Remission Induction phase, and then every 2 weeks for 30 weeks starting in the CNS phase (16 total doses of Oncaspar). Participants placed in the SC-PEG group will receive SC-PEG asparaginase on Day 7 of the remission induction phase and then every 3 weeks beginning in the CNS phase (11 total doses of SC-PEG).
Minimal Residual Disease (MRD) testing is a way to look for very low levels of leukemia in the body that cannot be seen under the microscope. These test will be done in a laboratory at Dana-Farber Cancer Institute. If the MRD results are in the low range on Day 32, thre will be no change to the treatment program described above. If the MRD results are in the high range, then it will be recommended that treatment be changed.
Participants will receive a fluoroquinolone antibiotic beginning during the first phase of treatment and continuing until the neutrophils and monocytes (two types of white blood cells in the blood that help fight infection) have increased. The goal of giving the antibiotics is to prevent infection during the first few weeks of treatment.
Participants who agree to have extra blood drawn to test for vitamin D levels in the blood will have 1 teaspoon of blood drawn at the following times: start of treatment, at the end of the first month of treatment, at the start of the continuation phase, and at the end of treatment. Participants will receive the results of these tests. If the vitamin D level is low, the study doctor will recommend that the participant take a vitamin D supplement. Participants may choose not to have blood drawn to check vitamin D levels, or may choose not to take the vitamin D supplement.
Participants will be asked at the time of study entry if they agree to provide additional blood and bone marrow samples for research. These additional samples will be used to learn more about the biology of ALL and lymphoblastic lymphoma. Stored specimens may also be used for future research regarding leukemia.
After completing all treatment, participants will be asked to come in for physical exams and blood work every month for the first six months after the final treatment, then every two months for the next 6 months, then every four months for the next year, and then every six months for the next year. After that we will ask you to come in once a year.
The investigators would like to keep track of the medical condition of all participants for the rest of their lives. This will be done by reviewing medical records of participants. The investigators may telephone participants who have finished treatment to see how they are doing if they have not been seen by their doctor for at least a year.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
SC-PEG (Arm A)
Patients in this arm were randomized to receive IV Calaspargase Pegol (SC-PEG) 2500 IU/m2, administered as a single dose during induction and for 30 weeks post-induction. In the post-induction phases, IV SC-PEG was administered every 3 weeks (for a total of 10 post-induction doses). Protocol therapy was comprised of 5 phases: Induction, Consolidation I, CNS, Consolidation II, and Continuation, and varied based off risk classification.
SC-PEG
11 doses Intravenously over one hour
Oncaspar (Arm B)
Patients in this arm were randomized to receive IV Oncaspar 2500 IU/m2, administered as a single dose during induction and for 30 weeks post-induction. In the post-induction phases, IV Oncaspar was administered every 2 weeks (for a total of 15 post-induction doses). Protocol therapy was comprised of 5 phases: Induction, Consolidation I, CNS, Consolidation II, and Continuation, and varied based off risk classification.
Oncaspar
16 doses Intravenously over one hour
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
SC-PEG
11 doses Intravenously over one hour
Oncaspar
16 doses Intravenously over one hour
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* No prior therapy except short courses of corticosteroids, a single dose of IT cytarabine or emergent radiation to the mediastinum or other life-threatening masses
Exclusion Criteria
* Have received any chemotherapy or radiotherapy for previous malignancy
* Receiving any other investigational agent
* Known to be HIV positive
* Uncontrolled intercurrent illness
* Pregnant or breastfeeding
* History of previous malignancy
365 Days
21 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Shire
INDUSTRY
National Cancer Institute (NCI)
NIH
Dana-Farber Cancer Institute
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Andrew E. Place, MD
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Andrew Place, MD
Role: PRINCIPAL_INVESTIGATOR
Dana-Farber Cancer Institute
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Children's Hospital Boston
Boston, Massachusetts, United States
Dana-Farber Cancer Institute
Boston, Massachusetts, United States
Columbia University Medical Center, Morgan Stanley Children's Hospital of New York-Presbyterian
New York, New York, United States
Montefiore Medical Center
New York, New York, United States
Hasbro Children's Hospital
Providence, Rhode Island, United States
McMaster University
Hamilton, Ontario, Canada
Hospital Sainte Justine, University of Montreal
Montreal, Quebec, Canada
Centre Hospitalier U. de Quebec
Québec, Quebec, Canada
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Vrooman LM, Blonquist TM, Stevenson KE, Supko JG, Hunt SK, Cronholm SM, Koch V, Kay-Green S, Athale UH, Clavell LA, Cole PD, Harris MH, Kelly KM, Laverdiere C, Leclerc JM, Michon B, Place AE, Schorin MA, Welch JJG, Neuberg DS, Sallan SE, Silverman LB. Efficacy and Toxicity of Pegaspargase and Calaspargase Pegol in Childhood Acute Lymphoblastic Leukemia: Results of DFCI 11-001. J Clin Oncol. 2021 Nov 1;39(31):3496-3505. doi: 10.1200/JCO.20.03692. Epub 2021 Jul 6.
Cole PD, Kim SY, Li Y, Schembri A, Kelly KM, Sulis ML, Vrooman L, Welch JJG, Ramjan S, Silverman LB, Sands SA. Feasibility of serial neurocognitive assessment using Cogstate during and after therapy for childhood leukemia. Support Care Cancer. 2023 Jan 10;31(2):109. doi: 10.1007/s00520-022-07566-6.
Burns MA, Place AE, Stevenson KE, Gutierrez A, Forrest S, Pikman Y, Vrooman LM, Harris MH, Hunt SK, O'Brien JE, Asselin BL, Athale UH, Clavell LA, Cole PD, Gennarini LM, Kahn JM, Kelly KM, Laverdiere C, Leclerc JM, Michon B, Schorin MA, Sulis ML, Welch JJG, Neuberg DS, Sallan SE, Silverman LB. Identification of prognostic factors in childhood T-cell acute lymphoblastic leukemia: Results from DFCI ALL Consortium Protocols 05-001 and 11-001. Pediatr Blood Cancer. 2021 Jan;68(1):e28719. doi: 10.1002/pbc.28719. Epub 2020 Oct 7.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
11-001
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.