Effect of Two Physical Training Programs on Oxygen Uptake and Heart Rate On-kinetics in Patients COPD

NCT ID: NCT01529489

Last Updated: 2012-02-08

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

40 participants

Study Classification

INTERVENTIONAL

Study Start Date

2008-01-31

Study Completion Date

2011-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Patients with chronic obstructive pulmonary disease (COPD) present slowed pulmonary oxygen uptake (VO2) and heart rate (HR) kinetics compared with age-matched controls. Patients with COPD present significant loss of body mass, decreased strength and endurance of respiratory muscles and lower limbs, leading reduced exercise capacity. This reduced exercise capacity can be marked by slowed kinetics of VO2 and HR at the onset of heavy-intensity exercise. Additionally, derangements in the diffusive and convective transport of oxygen to skeletal muscle mitocondria, and intramyocyte metabolic machinery, higher ventilation and disturbances in mechanics of breathing, hypoxemia, pulmonary hemodynamics, autonomic balance, and peripheral vasodilation, and accumulation of by-products that might be related to increased muscle fatigability could slow the response of systemic (central) and peripheral (microvascular) oxygen delivery to a point where the kinetics of VO2 might become limited by O2 availability and HR. Thus, the physical training programs of the lower limbs, in addition to presenting scientific evidence "A", are important components, resulting in the reversal of the manifestations of COPD, resulting in improvement in exercise capacity, well significantly speeded VO2 and HR kinetics in patients with COPD. However, it should be taken into account the choice of an appropriate program limitations and severity of disease. Assuming that COPD patients present slower VO2 and HR kinetics, the investigators hypothesized that the heavy-intense interval physical training in equipament elliptical would promote a greater increase in the functionality (functional performance) and speeded kinetics in the cycle ergometer and elliptical equipment constant-load intense exercises tests of COPD patients. In this context, the present study intends to evaluate and compare the effects of resistive plus aerobic physical training and interval physical training on oxygen consumption (VO2) and heart rate (HR) kinetics responses at the onset in cycle ergometer and elliptical equipment constant-load intense exercises tests in patients with COPD.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Subjects performed after and before of two physical training program the following tests: lung function test,cardiopulmonary exercise testing (CPT), constant-load exercise test in cycle ergometer, Constant-load exercise test in elliptical equipament, one repetition maximum test(1RM), on alternate days.

* Lung function: All patients underwent spirometry with the determination of FEV1 and FVC according to American Thoracic Society recommendations. Spirometry was performed using a COSMED microQuark PC - based Spirometer ®, (Pavona di Albano - Roma, Itália), which was calibrated before each test.
* Cardiopulmonary Exercise Testing (CPT): Incremental symptom-limited exercise testing was performed on a cycle-ergometer(Ergo FIT®, model Ergo 167 Cycle, Pirmasens, Germany) using a computer-based ventilatory expired gas analysis system (VO2000, Medgraphics Corp., St. Paul, MN). All subjects underwent a CPT to determine the peak work rate and the peak oxygen uptake (peak VO2). The subjects' electrocardiographic recordings were monitored using a cardiac monitor, SpO2, BP and sensation of dyspnea and fatigue using the BE-CR-10. A gas analyzer (VO2000 Medgraphics®, St Paul MN, USA) was used to obtain the participants' VO2 at each stage of the test. The ergospirometric values were recorded by the mean value measured every three breaths using the Aerograph® program. The VO2 was determined choosing the higher and more coherent value in the final 30 seconds of each stage.
* Constant-load exercise test in cycle ergometer and Constant-load exercise test in elliptical equipament: The two exercise tests were performed at 70% of the previously determined work rate in CPT. During the CSET, VO2 was measured breath-by-breath and averaged every three respiration, while SpO2, HR, and the electrocardiogram were continuously monitored, and calculated a on-Kinetics of VO2 and HR.

\* Physical training program:
* The interval physical training on the elliptical trainer (Kiko's® HM 6022, São Paulo, SP, Brazil) totalized 18 sessions that the individuals of both groups had to attend at least twice a week. Each session lasted not more than 60 minutes and they were all individual meetings. The minimal work rate of the equipment was 40W and the lower increment work rate was 10W. The elliptical trainer allowed combined exercise with the upper limb, however, in the present study, the exercise was performed with the arms fixed, and every participant's HR was monitored using a pulse frequency meter (Polar® FS2cTM Kempele, Finland), the pulse oxygen saturation (SpO2) using a pulse oximeter (Nonin®, model 8500A, Minneapolis, Mn, USA), the blood pressure (BP) using a mercury sphygmomanometer (Oxigel®, São Paulo, SP, Brazil) and the sensation of dyspnea and lower limb fatigue using the Modified Borg CR-10 Scale (BE-CR10). The elliptical exercise was an interval training and was based on studies that performed interval training exercise in cycle ergometer. This was a 30-minute exercise with a rest interval established in one minute. The exercise's work rateworkload was the maximal achieved in the CPT, and it was not modified until the sessions were finished The individuals who did not reach 40W in the CPT performed 30 seconds exercising periods at 40W with 1-minute resting interval. The volunteers who achieved workload equal or higher 40W performed 1-minute exercising periods at the workload achieved in the CPT with 1-minute resting interval. During the exercise on the equipment, the individuals should keep the speed between 40 and 50 rpm.Vital signs (HR, BP, SpO2) were recorded at the beginning and at the end of each session, as well as monitored before, during and after the elliptical exercise. During the training, the vital signs were recorded on the first 30 seconds of each resting interval.
* The aerobic associate resisted physical training consisted of thirty minutes oa aerobic training at 60-70% of work rate obtained in CPT and subsequently three sets of fifteen repetitions of resistance training in lower limbs on leg press with an intensity of 40-60% of one repetition maximum test.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Chronic Obstructive Pulmonary Disease Healthy

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

DOUBLE

Participants Investigators

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Interval physical training Control group

Group Type ACTIVE_COMPARATOR

Interval physical training in elliptical equipament

Intervention Type OTHER

Control group (healthy individuals), interval physical training, elliptical equipment, oxygen uptake kinetic, heart rate kinetic.

Resisted/Aerobic physical training group

Group Type EXPERIMENTAL

Resisted/Aerobic physical training

Intervention Type OTHER

COPD, aerobic physical training in cicloergometer, resisted physical training in cicloergometer, oxygen uptake kinetic, heart rate kinetic.

Aerobic/resisted physical training group

Group Type ACTIVE_COMPARATOR

Resisted/Aerobic physical training

Intervention Type OTHER

Control group, aerobic physical training in cicloergometer, resisted physical training in leg-press oxygen uptake kinetic heart rate kinetic

Interval physical training group

COPD, interval physical training, elliptical equipament, oxygen uptake kinetic, heart rate kinetic

Group Type EXPERIMENTAL

Interval physical training in elliptical equipament

Intervention Type OTHER

COPD, interval physical training, elliptical equipament, oxygen uptake kinetic, heart rate kinetic

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Resisted/Aerobic physical training

COPD, aerobic physical training in cicloergometer, resisted physical training in cicloergometer, oxygen uptake kinetic, heart rate kinetic.

Intervention Type OTHER

Interval physical training in elliptical equipament

Control group (healthy individuals), interval physical training, elliptical equipment, oxygen uptake kinetic, heart rate kinetic.

Intervention Type OTHER

Interval physical training in elliptical equipament

COPD, interval physical training, elliptical equipament, oxygen uptake kinetic, heart rate kinetic

Intervention Type OTHER

Resisted/Aerobic physical training

Control group, aerobic physical training in cicloergometer, resisted physical training in leg-press oxygen uptake kinetic heart rate kinetic

Intervention Type OTHER

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

COPD, aerobic physical training in cicloergometer, resisted physical training in cicloergometer, oxygen uptake kinetic, heart rate kinetic. Control group (healthy individuals), interval physical training in elliptical equipment, oxygen uptake kinetic, heart rate kinetic. COPD, interval physical training in elliptical equipament, oxygen uptake kinetic, heart rate kinetic. Control group, aerobic physical training in cicloergometer, resisted physical training in leg-press, oxygen uptake kinetic, heart rate kinetic.

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Experimental Group:

* Patients with clinical and spyrometric diagnosis of COPD presenting FEV1/FVC \< 70% and FEV1 \< 80% predicted by pulmonary function observed and were classified as patients with moderate to very severe obstruction (GOLD, 2010).
* Clinically stable with no history infection or exacerbation of the respiratory symptoms or change in medication for two months preceding the study.
* Patients were non oxygen dependent, smokers or former smokers.
* No subject in the COPD group had ever participated in a pulmonary rehabilitation program (i.e., sedentary during the year preceding admission to the study).
* Adherence to the individually prescribed treatment regimen.
* Control Group:

* Pulmonary Function normal.
* Subjects in the control group were free of chronic pulmonary, cardiovascular, immune, and metabolic disease.
* Healthy controls who were sedentary during the year preceding admission to the study.

Exclusion Criteria

* Patients with clinical diagnosis of COPD presenting FEV1/FVC ≥ 70% FEV1 ≥ 80% predicted (GOLD, 2010).
* Malignancy, orthopedic or neurological conditions affecting the ability to exercise, peripheral arterial disease, clinically apparent heart failure, and/or any renal, hepatic or inflammatory disease.
* Changed the type of medication during the study.
* Uncontrolled hypertension patients.
* Peripheral oxygen saturation below 90% at rest.
Minimum Eligible Age

55 Years

Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Universidade Federal de Sao Carlos

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Bruna Varanda Pessoa

Principal Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Bruna V Pessoa, Ms

Role: PRINCIPAL_INVESTIGATOR

Universidade Federal de Sao Carlos

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Federal University of sao Carlos

São Carlos, São Paulo, Brazil

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Brazil

References

Explore related publications, articles, or registry entries linked to this study.

Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J; ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J. 2005 Aug;26(2):319-38. doi: 10.1183/09031936.05.00034805. No abstract available.

Reference Type RESULT
PMID: 16055882 (View on PubMed)

Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81.

Reference Type RESULT
PMID: 7154893 (View on PubMed)

Dourado VZ, Tanni SE, Vale SA, Faganello MM, Sanchez FF, Godoy I. Systemic manifestations in chronic obstructive pulmonary disease. J Bras Pneumol. 2006 Mar-Apr;32(2):161-71. doi: 10.1590/s1806-37132006000200012. English, Portuguese.

Reference Type RESULT
PMID: 17273586 (View on PubMed)

Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J; Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007 Sep 15;176(6):532-55. doi: 10.1164/rccm.200703-456SO. Epub 2007 May 16.

Reference Type RESULT
PMID: 17507545 (View on PubMed)

Knudson RJ, Lebowitz MD, Holberg CJ, Burrows B. Changes in the normal maximal expiratory flow-volume curve with growth and aging. Am Rev Respir Dis. 1983 Jun;127(6):725-34. doi: 10.1164/arrd.1983.127.6.725.

Reference Type RESULT
PMID: 6859656 (View on PubMed)

Casaburi R, Porszasz J, Burns MR, Carithers ER, Chang RS, Cooper CB. Physiologic benefits of exercise training in rehabilitation of patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997 May;155(5):1541-51. doi: 10.1164/ajrccm.155.5.9154855.

Reference Type RESULT
PMID: 9154855 (View on PubMed)

Nasis IG, Vogiatzis I, Stratakos G, Athanasopoulos D, Koutsoukou A, Daskalakis A, Spetsioti S, Evangelodimou A, Roussos C, Zakynthinos S. Effects of interval-load versus constant-load training on the BODE index in COPD patients. Respir Med. 2009 Sep;103(9):1392-8. doi: 10.1016/j.rmed.2009.03.003. Epub 2009 Apr 5.

Reference Type RESULT
PMID: 19349153 (View on PubMed)

Vogiatzis I, Nanas S, Roussos C. Interval training as an alternative modality to continuous exercise in patients with COPD. Eur Respir J. 2002 Jul;20(1):12-9. doi: 10.1183/09031936.02.01152001.

Reference Type RESULT
PMID: 12166558 (View on PubMed)

Kortianou EA, Nasis IG, Spetsioti ST, Daskalakis AM, Vogiatzis I. Effectiveness of Interval Exercise Training in Patients with COPD. Cardiopulm Phys Ther J. 2010 Sep;21(3):12-9.

Reference Type RESULT
PMID: 20957074 (View on PubMed)

Franssen FM, Broekhuizen R, Janssen PP, Wouters EF, Schols AM. Effects of whole-body exercise training on body composition and functional capacity in normal-weight patients with COPD. Chest. 2004 Jun;125(6):2021-8. doi: 10.1378/chest.125.6.2021.

Reference Type RESULT
PMID: 15189917 (View on PubMed)

Spruit MA, Gosselink R, Troosters T, De Paepe K, Decramer M. Resistance versus endurance training in patients with COPD and peripheral muscle weakness. Eur Respir J. 2002 Jun;19(6):1072-8. doi: 10.1183/09031936.02.00287102.

Reference Type RESULT
PMID: 12108859 (View on PubMed)

Panton LB, Golden J, Broeder CE, Browder KD, Cestaro-Seifer DJ, Seifer FD. The effects of resistance training on functional outcomes in patients with chronic obstructive pulmonary disease. Eur J Appl Physiol. 2004 Apr;91(4):443-9. doi: 10.1007/s00421-003-1008-y. Epub 2003 Nov 25.

Reference Type RESULT
PMID: 14639479 (View on PubMed)

Misic MM, Valentine RJ, Rosengren KS, Woods JA, Evans EM. Impact of training modality on strength and physical function in older adults. Gerontology. 2009;55(4):411-6. doi: 10.1159/000227804. Epub 2009 Jul 3.

Reference Type RESULT
PMID: 19590159 (View on PubMed)

Egana M, Donne B. Physiological changes following a 12 week gym based stair-climbing, elliptical trainer and treadmill running program in females. J Sports Med Phys Fitness. 2004 Jun;44(2):141-6.

Reference Type RESULT
PMID: 15470311 (View on PubMed)

Kim JK, Nho H, H Whaley M. Inter-modal comparisons of acute energy expenditure during perceptually based exercise in obese adults. J Nutr Sci Vitaminol (Tokyo). 2008 Feb;54(1):39-45. doi: 10.3177/jnsv.54.39.

Reference Type RESULT
PMID: 18388406 (View on PubMed)

Burnfield JM, Shu Y, Buster T, Taylor A. Similarity of joint kinematics and muscle demands between elliptical training and walking: implications for practice. Phys Ther. 2010 Feb;90(2):289-305. doi: 10.2522/ptj.20090033. Epub 2009 Dec 18.

Reference Type RESULT
PMID: 20022994 (View on PubMed)

Lu TW, Chien HL, Chen HL. Joint loading in the lower extremities during elliptical exercise. Med Sci Sports Exerc. 2007 Sep;39(9):1651-8. doi: 10.1249/mss.0b013e3180dc9970.

Reference Type RESULT
PMID: 17805099 (View on PubMed)

Puente-Maestu L, Sanz ML, Sanz P, Nunez A, Gonzalez F, Whipp BJ. Reproducibility of the parameters of the on-transient cardiopulmonary responses during moderate exercise in patients with chronic obstructive pulmonary disease. Eur J Appl Physiol. 2001 Sep;85(5):434-41. doi: 10.1007/s004210100486.

Reference Type RESULT
PMID: 11606012 (View on PubMed)

Chiappa GR, Borghi-Silva A, Ferreira LF, Carrascosa C, Oliveira CC, Maia J, Gimenes AC, Queiroga F Jr, Berton D, Ferreira EM, Nery LE, Neder JA. Kinetics of muscle deoxygenation are accelerated at the onset of heavy-intensity exercise in patients with COPD: relationship to central cardiovascular dynamics. J Appl Physiol (1985). 2008 May;104(5):1341-50. doi: 10.1152/japplphysiol.01364.2007. Epub 2008 Mar 20.

Reference Type RESULT
PMID: 18356477 (View on PubMed)

Laveneziana P, Valli G, Onorati P, Paoletti P, Ferrazza AM, Palange P. Effect of heliox on heart rate kinetics and dynamic hyperinflation during high-intensity exercise in COPD. Eur J Appl Physiol. 2011 Feb;111(2):225-34. doi: 10.1007/s00421-010-1643-z. Epub 2010 Sep 18.

Reference Type RESULT
PMID: 20852881 (View on PubMed)

Somfay A, Porszasz J, Lee SM, Casaburi R. Effect of hyperoxia on gas exchange and lactate kinetics following exercise onset in nonhypoxemic COPD patients. Chest. 2002 Feb;121(2):393-400. doi: 10.1378/chest.121.2.393.

Reference Type RESULT
PMID: 11834648 (View on PubMed)

Chiappa GR, Queiroga F Jr, Meda E, Ferreira LF, Diefenthaeler F, Nunes M, Vaz MA, Machado MC, Nery LE, Neder JA. Heliox improves oxygen delivery and utilization during dynamic exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009 Jun 1;179(11):1004-10. doi: 10.1164/rccm.200811-1793OC. Epub 2009 Mar 19.

Reference Type RESULT
PMID: 19299497 (View on PubMed)

Poole DC, Ferreira LF, Behnke BJ, Barstow TJ, Jones AM. The final frontier: oxygen flux into muscle at exercise onset. Exerc Sport Sci Rev. 2007 Oct;35(4):166-73. doi: 10.1097/jes.0b013e318156e4ac.

Reference Type RESULT
PMID: 17921784 (View on PubMed)

Cerretelli P, Shindell D, Pendergast DP, Di Prampero PE, Rennie DW. Oxygen uptake transients at the onset and offset of arm and leg work. Respir Physiol. 1977 Jun;30(1-2):81-97. doi: 10.1016/0034-5687(77)90023-8.

Reference Type RESULT
PMID: 877453 (View on PubMed)

Williamson JW, Raven PB, Whipp BJ. Unaltered oxygen uptake kinetics at exercise onset with lower-body positive pressure in humans. Exp Physiol. 1996 Jul;81(4):695-705. doi: 10.1113/expphysiol.1996.sp003970.

Reference Type RESULT
PMID: 8853277 (View on PubMed)

Hughson RL, Cochrane JE, Butler GC. Faster O2 uptake kinetics at onset of supine exercise with than without lower body negative pressure. J Appl Physiol (1985). 1993 Nov;75(5):1962-7. doi: 10.1152/jappl.1993.75.5.1962.

Reference Type RESULT
PMID: 8307846 (View on PubMed)

Egana M, O'Riordan D, Warmington SA. Exercise performance and VO2 kinetics during upright and recumbent high-intensity cycling exercise. Eur J Appl Physiol. 2010 Sep;110(1):39-47. doi: 10.1007/s00421-010-1466-y. Epub 2010 Apr 13.

Reference Type RESULT
PMID: 20386919 (View on PubMed)

Koga S, Shiojiri T, Shibasaki M, Kondo N, Fukuba Y, Barstow TJ. Kinetics of oxygen uptake during supine and upright heavy exercise. J Appl Physiol (1985). 1999 Jul;87(1):253-60. doi: 10.1152/jappl.1999.87.1.253.

Reference Type RESULT
PMID: 10409583 (View on PubMed)

Leyk D, Essfeld D, Hoffmann U, Wunderlich HG, Baum K, Stegemann J. Postural effect on cardiac output, oxygen uptake and lactate during cycle exercise of varying intensity. Eur J Appl Physiol Occup Physiol. 1994;68(1):30-5. doi: 10.1007/BF00599238.

Reference Type RESULT
PMID: 8162920 (View on PubMed)

Rossiter HB, Ward SA, Kowalchuk JM, Howe FA, Griffiths JR, Whipp BJ. Effects of prior exercise on oxygen uptake and phosphocreatine kinetics during high-intensity knee-extension exercise in humans. J Physiol. 2001 Nov 15;537(Pt 1):291-303. doi: 10.1111/j.1469-7793.2001.0291k.x.

Reference Type RESULT
PMID: 11711581 (View on PubMed)

Schneider DA, Wing AN, Morris NR. Oxygen uptake and heart rate kinetics during heavy exercise: a comparison between arm cranking and leg cycling. Eur J Appl Physiol. 2002 Nov;88(1-2):100-6. doi: 10.1007/s00421-002-0690-5. Epub 2002 Sep 18.

Reference Type RESULT
PMID: 12436276 (View on PubMed)

Fukuoka Y, Endo M, Kagawa H, Itoh M, Nakanishi R. Kinetics and steady-state of VO2 responses to arm exercise in trained spinal cord injury humans. Spinal Cord. 2002 Dec;40(12):631-8. doi: 10.1038/sj.sc.3101383.

Reference Type RESULT
PMID: 12483496 (View on PubMed)

Crouter SE, Antczak A, Hudak JR, DellaValle DM, Haas JD. Accuracy and reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems. Eur J Appl Physiol. 2006 Sep;98(2):139-51. doi: 10.1007/s00421-006-0255-0. Epub 2006 Aug 3.

Reference Type RESULT
PMID: 16896734 (View on PubMed)

Bell C, Paterson DH, Kowalchuk JM, Padilla J, Cunningham DA. A comparison of modelling techniques used to characterise oxygen uptake kinetics during the on-transient of exercise. Exp Physiol. 2001 Sep;86(5):667-76. doi: 10.1113/eph8602150.

Reference Type RESULT
PMID: 11571496 (View on PubMed)

Engelen M, Porszasz J, Riley M, Wasserman K, Maehara K, Barstow TJ. Effects of hypoxic hypoxia on O2 uptake and heart rate kinetics during heavy exercise. J Appl Physiol (1985). 1996 Dec;81(6):2500-8. doi: 10.1152/jappl.1996.81.6.2500.

Reference Type RESULT
PMID: 9018498 (View on PubMed)

Berger NJ, Tolfrey K, Williams AG, Jones AM. Influence of continuous and interval training on oxygen uptake on-kinetics. Med Sci Sports Exerc. 2006 Mar;38(3):504-12. doi: 10.1249/01.mss.0000191418.37709.81.

Reference Type RESULT
PMID: 16540838 (View on PubMed)

Puente-Maestu L, Tena T, Trascasa C, Perez-Parra J, Godoy R, Garcia MJ, Stringer WW. Training improves muscle oxidative capacity and oxygenation recovery kinetics in patients with chronic obstructive pulmonary disease. Eur J Appl Physiol. 2003 Feb;88(6):580-7. doi: 10.1007/s00421-002-0743-9. Epub 2002 Nov 30.

Reference Type RESULT
PMID: 12560958 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

BVPS-123

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.