EEG Monitoring to Assess Emergence From Neuroanesthesia
NCT ID: NCT00443807
Last Updated: 2008-04-16
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
21 participants
INTERVENTIONAL
2007-08-31
2008-03-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
This pilot study will be done to assess a nonlinear EEG monitor (EEGo) to direct therapy and predict prompt emergence from neuroanesthesia where EEG monitoring is done in neurosurgical cases. In our centre we routinely monitor the EEG, SSEP and/or MEP during temporary aneurysm clipping and during microvascular decompressive surgery. It is just these cases where emergence can be delayed despite following standard neuroanesthesia techniques. The EEGo processes the standard EEG signal by nonlinear analysis of the raw signal by 3 dimensional phase delay plots. A cascade from a point attractor, periodic attractor, toroidal attractor to a 3-D chaotic attractor occurs from burst suppression to the awake state. These resemble phase transitions and occur rapidly from one state to the next. An analogy is the phase transition that occurs when water changes to ice and vice versa. Monitoring these transitions should permit a rational approach to therapy during anesthesia emergence, better predict emergence, facilitate extubation based on the awake state, allow titration of vasoactive agents during emergence to smooth hemodynamic control and permit more rapid emergence at end procedure. The EEGo will be compared directly in real time to the bispectral (BIS) monitor re goal directed emergence. If efficacy is shown with the EEGo, a more formal comparison to BIS and clinical judgement will be studied.
BIS monitoring can aid emergence in outpatient procedures, both with time to wakening and time in the recovery room. These results also impact on the cost of anesthetic drugs and OR and Recovery Room costs. Work demonstrating accelerated emergence from desflurane with BIS do not highlight the manner in which the BIS directs the emergence. The depth of anesthesia is adjusted to 50 - 60 ABU during maintenance and then emergence is tracked. A specific BIS number to indicate emergence is not suggested. In fact, a correlation between the BIS in the awake state and with movement and eye opening appears poor with the emergence BIS usually being lower than the pre-induction BIS. The BIS may also on occasion be very low during emergence - deemed artifactually so and in this work it is suggested that the raw EEG be observed to aid emergence. It would seem that significant issues relate to intra and interpatient variability with this processed EEG signal. Recent work suggests significant discrepancy of BIS signals between hemispheres and even recording from two sites in the same hemisphere. In addition, BIS correlates poorly with end-tidal desflurane and awake state.
Thus, it would seem that while the BIS can aid management of depth of anesthesia during maintenance, it is not ideally suited to direct a facilitated emergence. In contrast, the EEGo monitor uses nonlinear analysis techniques to provide a visual output related to depth of anesthesia.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
SINGLE_GROUP
DIAGNOSTIC
TRIPLE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
On-line EEG monitoring during neurosurgery
Comparison of 2 ways of processing the EEG signal
EEGo vs BIS
comparison of two processed EEG monitors.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* a history of asthma requiring routine use of bronchodilators, because the study will use desflurane as the volatile agent
* pregnancy
* non-elective aneurysm clipping
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Manitoba
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
University of Manitoba
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
W. Alan C. Mutch, MD
Role: PRINCIPAL_INVESTIGATOR
University of Manitoba
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Health Sciences Centre
Winnipeg, Manitoba, Canada
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
B2007:008
Identifier Type: -
Identifier Source: org_study_id